
CSE201 Advanced Programming
Lab Assignment 05

IIIT-Delhi. 6th Sept 2019. Due by 11:59pm on 8th Sept 2019

Topics Covered: Exception Handling

This is a take-home lab assignment. No extensions whatsoever will be provided. Any submission
after the deadline will not be evaluated. If you see any ambiguity or inconsistency in a question,
please seek clarification from the teaching staff. Please read the entire text below very carefully
before starting your implementation.

Plagiarism: All submitted lab assignments are expected to be the result of your individual effort.
You should never misrepresent someone else’s work as your own. In case any plagiarism case is
detected, it will be dealt as per IIITD plagiarism policy and without any relaxations:
https://www.iiitd.ac.in/sites/default/files/docs/education/AcademicDishonesty.pdf

Please note that you are not allowed to discuss the design/solution of the lab assignment (e.g.
classroom page discussions etc.). Anyone who is found doing this will be treated as a plagiarism
case. No excuses!
__

We would like to keep this documentation really simple and short in this assignment. There is a
sample test case execution shown at the end of this document that you can understand easily to
code this racing game.

Like I said, this is a racing game, and like any other racing game there are obstacles and freebies
on your race track. For implementing this game you must use inheritance, polymorphism,
exception handling, and define your own exceptions. We have given the names of those
exceptions as well in the sample test case.

The game starts with the user entering the total number of tiles on the race track. Each tile
represents one position in one dimension. A tile can be of type Snake, Vulture, Cricket, White, or
Trampoline. This is a single player game and once the game starts, its the computer who plays
the game without any user intervention, and continues playing until the player wins.

Total number of Snakes, Vultures, Cricket, and Trampoline are randomly generated in some
realistic way (ie. every tile should not have these items). You can decide randomly for each of them
how many such tiles could be in your race track. All of the remaining tiles in the track are White
tiles.

The player has to shake the tile he reaches to see what is hidden inside: Snake, Vulture, Cricket,
White, or Trampoline. Upon shaking, the tile will make a specific sound, announcing which type of
tile it is, and would also describe what it is going to do to the player (either make player move
backward or forward). Each Snake, Vulture, Cricket, and Trampoline will have a fixed number (again
randomly generated realistic number, x, where 1<= x <= 10, assuming total tiles >> 10) associated
with it. For e.g., if the number associated with Snake is 7, then upon shaking a snake tile, first the
snake will describe what it is going to do (see test case) and then also throw a custom exception
SnakeBiteException to continue the game. Likewise, Cricket will throw CricketBiteException,
Vulture will throw VultureBiteException, and Trampoline will throw TrampolineException. Only
difference is that the Trampoline would let you advance by a fixed number of Tiles (again randomly
generated realistic number, x, where 1<= x <= 10, assuming total tiles >> 10) whereas Snake,
Vulture and Cricket will cause player to go back a certain number of tiles (again randomly generated
realistic number, x, where 1<= x <= 10, assuming total tiles >> 10). A white tile does not do anything
special when shaken, and simply describes that its a white tile and the player is allowed to rest on
it without any danger or freebies.

Few other simple rules of the game:

a) Computer decides how many tiles the player can move by throwing a 6 faced dice.
b) Player can move out of start position (Tile-1) only if it gets 6 from the dice roll. After getting

a 6 at Tile-1, the player will get another dice roll. (see test case)
c) The game will continue endlessly, unless the player will reach the last tile in the racing track.

This event will also throw another custom exception GameWinnerException. Computer will
also print the total moves required for winning.

d) You must use proper exception handling at all appropriate places (remember defensive
programming!)

===============================TESTCASE================================
>>Enter total number of tiles on the race track (length)
100

>>Setting up the race track…
>>Danger: There are X, Y, Z numbers of Snakes, Cricket, and Vultures respectively on your track! // X, Y, Z are randomly
generated as described in the documentation above
>>Danger: Each Snake, Cricket, and Vultures can throw you back by A, B, C number of Tiles respectively! // A, B, C are
randomly generated as described in the documentation above
>>Good News: There are T number of Trampolines on your track! // T is randomly generated as described in the
documentation above
>>Good News: Each Trampoline can help you advance by D number of Tiles // D is randomly generated as described in
the documentation above
>>Enter the Player Name
Josh
>>Starting the game with Josh at Tile-1
>>Control transferred to Computer for rolling the Dice for Josh
>>Hit enter to start the game
>>Game Started ======================>
>>[Roll-1]: Josh rolled 5 at Tile-1, OOPs you need 6 to start
>>[Roll-2]: Josh rolled 6 at Tile-1. You are out of the cage! You get a free roll
>>[Roll-3]: Josh rolled 5 at Tile-1, landed on Tile 6.
>> Trying to shake the Tile-6
>> Hiss…! I am a Snake, you go back 7 tiles! // assumingA=7. SnakeBiteException thrown
>> Josh moved to Tile 1 as it can’t go back further
>>[Roll-4]: Josh rolled 5 at Tile-1, OOPs you need 6 to start
>>[Roll-5]: Josh rolled 6 at Tile-1. You are out of the cage! You get a free roll
>>[Roll-6]: Josh rolled 3 at Tile-1, landed on Tile 4.
>> Trying to shake the Tile-4
>> I am a White tile!
>> Josh moved to Tile-4
>>[Roll-7]: Josh rolled 6 at Tile-4, landed on Tile 10.
>> Trying to shake the Tile-10
>> Chirp…! I am a Cricket, you go back 2 tiles! // assuming B=2. CricketBiteException thrown
>> Josh moved to Tile 8
>>[Roll-8]: Josh rolled 6 at Tile-8, landed on Tile 14.
>> Trying to shake the Tile-14
>> Yapping...! I am a Vulture, you go back 1 tiles! // assuming C=1. VultureBiteException thrown
>> Josh moved to Tile-13
>>[Roll-9]: Josh rolled 5 at Tile-13, landed on Tile 18.
>> Trying to shake the Tile-18
>> PingPong! I am a Trampoline, you advance 10 tiles//assuming D=10.TrampolineException thrown
>> Josh moved to Tile-28
…………
…………
>>[Roll-100]: Josh rolled 5 at Tile-99, landed on Tile-99.
>>[Roll-101]: Josh rolled 4 at Tile-99, landed on Tile-99.
>>[Roll-102]: Josh rolled 1 at Tile-99, landed on Tile-100. // GameWinnerException thrown
>> Josh wins the race in 102 (<Should be updated appropriately>) rolls!
>> Total Snake Bites = <Should be updated appropriately>
>> Total Vulture Bites = <Should be updated appropriately>
>> Total Cricket Bites = <Should be updated appropriately>
>> Total Trampoline hits = <Should be updated appropriately>

