
CSE201 Advanced Programming
Lab Assignment 06

IIIT-Delhi. 27th Sept 2019. Due by 11:59pm on 30th Sept 2019

I/O Streams, Serialization, Deserialization and JUnit Testing

This is a take-home lab assignment. No extensions whatsoever will be provided. Any submission
after the deadline will not be evaluated. If you see any ambiguity or inconsistency in a question,
please seek clarification from the teaching staff. Please read the entire text below very carefully
before starting your implementation.

Plagiarism: All submitted lab assignments are expected to be the result of your individual effort.
You should never misrepresent someone else’s work as your own. In case any plagiarism case is
detected, it will be dealt as per IIITD plagiarism policy and without any relaxations:
https://www.iiitd.ac.in/sites/default/files/docs/education/AcademicDishonesty.pdf

Please note that you are not allowed to discuss the design/solution of the lab assignment (e.g.
classroom page discussions etc.). Anyone who is found doing this will be treated as a plagiarism
case. No excuses!
__

Your racing game application is working perfectly! Now the gaming company wants you to
implement the next version of this game that must use I/O Streams, Serialization,
Deserialization, and JUnit Testing. Just in case if you did not submit Assignment-5, you can still
attempt this Assignment-6 but you will have to first implement Assignment-5 before you start
Assignment-6 implementation (using someone else’s code is plagiarism!). However, we will only
evaluate the code specific to Assignment-6 but not Assignment-5.

In this Version 2.0 of your racing application, you have to extend your implementation to make it
more user-friendly and to ensure that the system is foolproof. These new set of requirements from
the gaming company are as following:

1. Your race track is now composed of 3 intermediate points: a) 25% of total tiles are covered,
b) 50% of total tiles are covered, and c) 75% of total tiles are covered. Whenever either of
these 3 checkpoints are reached, your implementation should ask the user if he/she wants
to continue or save the game. If a user selects the save option then your implementation
should save the current state of the game on disk and then exit instantly.

a. Assumption is that the race track is not too small, such that the player does not move
past the second checkpoint directly without even stopping near first checkpoint.
There is no hard limit to the track size, but during the demo we will check the save
options at least two checkpoints.

2. The player should be able to load a saved game from the disk. The game would simply ask
the player Name to load the correct game and resume from the saved state. After resuming,
if still some intermediate checkpoints are encountered then Save option should be provided
as mentioned in point-1 above. However, this time you can simply delete the earlier saved
session and only save the current session for this player login.

3. Version 2.0 platform should be robust to corner cases and should never crash. JUnit based
unit testing is a good way of testing your platform effectively and comprehensively. You have
to design a JUnit Test Suite for your gaming system that contains different JUnit test cases
for testing different functionality in Version 2.0 as mentioned below:

a. Test Cases to validate user defined Exceptions mentioned in Version 1.0. Note that
each test cases should be independent of each other, and for this you would have
to make some changes to your existing code to accommodate the testing.

1. SnakeBiteException.
2. VultureBiteException.
3. CricketBiteException.
4. TrampolineException.
5. GameWinnerException.

b. Test Case related to Save option in Version 2.0:
1. Test the serialization of game at first checkpoint.

No test case is provided for this assignment.

