
Lecture 01: Introduction to OOP

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE201: Advanced Programming

Why Object Oriented Programming?

2
© Vivek Kumar

What is OOP?

3

It is a programming paradigm based on the concept of “objects”, which
may contain data in the form of fields, often known as attributes; and
code, in the form of procedures, often known as methods
(Wikipedia)

© Vivek Kumar

What is OOP?

Properties / Attributes
 fuel
 maxspeed

Method
 reFuel() getFuel()
setSpeed() getSpeed()

car
class

4
© Vivek Kumar

Advantages of OOP

• Code reuse and recycling
– Objects can easily be reused

• Design benefits
– Extensive planning phase results better design and

lesser flaws
• Software maintenance

– Easy to incorporate changes in legacy code (e.g.,
supporting a new hardware)

• Simplicity

5
© Vivek Kumar

OOP Features

• Encapsulation
• Method overloading
• Inheritance
• Abstraction
• Method overriding
• Polymorphism

6
© Vivek Kumar

Encapsulation

How the car is
moving and how

the engine is
working, this
information is

hidden.

(Encapsulation)

The main thing
is How to drive

a car ……

7
© Vivek Kumar

Encapsulation
• An encapsulated object can be thought of as

a black box -- its inner workings are hidden
from the client

• The client invokes the interface methods of
the object, which manages the instance data

Methods

Data

Client

© 2004 Pearson Addison-Wesley. All rights reserved
8

Why Encapsulation?

No encapsulation

MyClass
int data
String name

OtherClass thing

void doSomething()
int getSomething()

The rest of your program...

Class Without Encapsulation

Why Encapsulation?

No encapsulation

MyClass
int data
String name

OtherClass thing

void doSomething()
int getSomething()

The rest of your program...

Class Without Encapsulation

Why Encapsulation?

Encapsulation

MyClass
int data
String name

OtherClass thing

void doSomething()
int getSomething()

The rest of your program...

/* interface methods */

Class Supporting Encapsulation

Visibility Modifier

public private

Variables

Methods Provide services
to clients

Support other
methods in the

class

Enforce
encapsulation

Violate
encapsulation

© 2004 Pearson Addison-Wesley. All rights reserved
12

Accessors and Mutators
• Because instance data is private, a class usually

provides services to access and modify data values

• An accessor method returns the current value of a
variable

• A mutator method changes the value of a variable

• The names of accessor and mutator methods take the
form getX and setX, respectively, where X is the
name of the value

• They are sometimes called “getters” and “setters”

Wait, but why do we need “setter” when we are talking about
restricting accesses to fields from outside world ?

© 2004 Pearson Addison-Wesley. All rights reserved
13

Mutator Restrictions

• The use of mutators gives the class
designer the ability to restrict a client’s
options to modify an object’s state

• A mutator is often designed so that the
values of variables can be set only within
particular limits

© 2004 Pearson Addison-Wesley. All rights reserved
14

Procedural v/s OOP

15

A Sample Problem

• Write a method that will throw 2 Dice with
varying number of sides, a specified amount
of times, and reports how many times we got
a snake eyes (both dice showing 1)

• For example numSnakeEyes(6, 13, 100)
should return the number of snake eyes after
throwing a 6 sided Dice and 13 sided Dice
100 times

© 2004 Pearson Addison-Wesley. All rights reserved
16

Procedural (Structured) Programming
Approach

static Random rand = new Random();

static int roll(int numFaces) {
 return 1 + rand.nextInt(numFaces);
}

static int numSnakeEyes(int sides1, int sides2, int numThrows) {
 int count = 0;
 for(int i = 0; i < numThrows; i++) {
 int face1 = roll(sides1);
 int face2 = roll(sides2);
 if (face1 == 1 && face2 == 1)
 count++;
 }

 return count;
}

© 2004 Pearson Addison-Wesley. All rights reserved
17

OOP Approach

• In OOP, we first focus on the main actors,
not how things are done.

• The main actors here are Dice objects. We
need to define a Dice class that captures
the state and behavior of a Dice.

• We can then instantiate as many dice
objects as we need for any particular
programs

© 2004 Pearson Addison-Wesley. All rights reserved
18

Classes (Recap)

• A class can contain data declarations and
method declarations

int size, weight;
char category;

Data declarations

Method declarations

© 2004 Pearson Addison-Wesley. All rights reserved
19

Dice Class

roll()

setter() / getter()

………

int faceValue;
int numFace;

Data declarations

Method declarations

© 2004 Pearson Addison-Wesley. All rights reserved
20

public class Dice {
 private final int numFaces; //maximum face value
 private int faceValue; //current value showing on the dice

 // Constructor: Sets the initial face value.
 public Dice(int _numFaces) {
 numFaces = _numFaces;
 roll();
 }

 // Rolls the dice
 public void roll() {
 faceValue = 1 + rand.nextInt(numFaces);
 }

 // Face value setter/mutator.
 public void setFaceValue (int value) {
 if (value <= numFaces)
 faceValue = value;
 }

OOP
Approach

© 2004 Pearson Addison-Wesley. All rights reserved 21

// Face value getter/setter.
 public int getFaceValue() {
 return faceValue;
 }

 // Face value getter/setter.
 public int getNumFaces() {
 return numFaces;
 }

 // Returns a string representation of this dice
 public String toString() {
 return “number of Faces “ + numFaces +
 “current face value “ + faceValue);
 }
} // End of Dice class

OOP
Approach

© 2004 Pearson Addison-Wesley. All rights reserved 22

static int numSnakeEyes(int sides1, int sides2,
int numThrows) {

 Die die1 = new Die(sides1);
 Die die2 = new Die(sides2);

 int count = 0;
 for(int i = 0; i < numThrows; i++) {
 die1.roll();
 die2.roll();
 if (die1.getFaceValue == 1 &&

die2.getFaceValue == 1)
 count++;
 }

 return count;
}

OOP
Approach

The new
version

© 2004 Pearson Addison-Wesley. All rights reserved 23

OOP
Approach

Dice dice1, dice2;
int sum;

dice1 = new Dice(7);
dice2 = new Dice(34);

dice1.roll();
dice2.roll();
System.out.println ("Dice One: " + dice1 + ", Dice Two:

" + dice2);

dice1.roll();
dice2.setFaceValue(4);
System.out.println ("Dice One: " + dice1 + ", Dice Two:

" + dice2);

sum = dice1.getFaceValue() + dice2.getFaceValue();
System.out.println ("Sum: " + sum);

sum = dice1.roll() + dice2.roll();
System.out.println ("Dice One: " + dice1 + ", Dice Two:

" + dice2);
System.out.println ("New sum: " + sum);

Using Dice
class in
general

© 2004 Pearson Addison-Wesley. All rights reserved 24

Instance Data
• We can depict the two Dice objects from

the RollingDice program as follows:

dice1 5faceValue

dice2 2faceValue

Each object maintains its own faceValue and
numFaces variable, and thus its own state

numFaces 6

numFaces 9

25

The toString Method

• All classes that represent objects should
define a toString method

• The toString method returns a
character string that represents the object
in some way

• It is called automatically when an object is
concatenated to a string or when it is
passed to the println method

© 2004 Pearson Addison-Wesley. All rights reserved 26

Another Sample Problem

• Coin example
– Write a program that flips two coins until one of

them comes up with heads three times in a
row, and report the winner

© 2004 Pearson Addison-Wesley. All rights reserved 27

Coin Class
public class Coin
{
 private final int HEADS = 0;
 private final int TAILS = 1;

 private int face;

 public Coin () {
 flip();
 }
 public void flip () {
 face = (int) (Math.random() * 2);
 }

public boolean isHeads () {
 return (face == HEADS);
 }
 public String toString() {
 String faceName;
 if (face == HEADS)
 faceName = "Heads";
 else
 faceName = "Tails";
 return faceName;
 }
} // end of class Coin

© 2004 Pearson Addison-Wesley. All rights reserved 28

FlipRace

// Flips two coins until one of them comes up
// heads three times in a row.
public static void main (String[] args) {
 final int GOAL = 3;
 int count1 = 0, count2 = 0;

 // Create two separate coin objects
 Coin coin1 = new Coin();
 Coin coin2 = new Coin();

 while (count1 < GOAL && count2 < GOAL)
 {
 coin1.flip();
 coin2.flip();

 // Print the flip results (uses Coin's toString method)
 System.out.print ("Coin 1: " + coin1);
 System.out.println (" Coin 2: " + coin2);

 // Increment or reset the counters
 count1 = (coin1.isHeads()) ? count1+1 : 0;
 count2 = (coin2.isHeads()) ? count2+1 : 0;
 }

 // Determine the winner
 if (count1 < GOAL)
 System.out.println ("Coin 2 Wins!");
 else
 if (count2 < GOAL)
 System.out.println ("Coin 1 Wins!");
 else
 System.out.println ("It's a TIE!");
 } // end of main()

© 2004 Pearson Addison-Wesley. All rights reserved 29

Summary

• What is OOP?
• Encapsulation

– Visibility modifiers
– Accessors and mutators

• Simple examples to understand the above
concepts

Next Class

• How to identify classes and objects in OOP

31

