
1
Andries van Dam ã 2016 09/20/16

Lecture 02: Classes and Objects
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE201: Advanced Programming

2
Andries van Dam ã 2016 09/20/16

Last Lecture

• Introduction to OOP
oWhat, Why, and Advantages of OOP
oEncapsulation
oProcedural programming v/s OO programming

3
Andries van Dam ã 2016 09/20/16

Today’s Lecture

• Identifying classes and objects
• Working with objects

4
Andries van Dam ã 2016 09/20/16

Ideas to Program
• Analysis

o What to do and not how to do it
o Decide corner cases and exact

functionalities
• Design

o Define classes, their attributes and
methods, objects, and class
relationships

• Implementation
o Novice programmers often think that

writing code is the heart of software
development, but actually it should be
the least creative step

• Testing
o A program should be free of errors

Analysis

Design

Implementation

Testing

(common sense)

(object oriented)

(actual programming)

© Vivek Kumar

5
Andries van Dam ã 2016 09/20/16

Analysis: Identifying Classes & Responsibilities

• Identifying classes
o Good first step: look for nouns in use cases. Then...

§ Actors- objects that perform tasks
§ Events - store information about events

• Identifying responsibilities
o Good first step: look for verbs, actions in use cases

§ These actions may directly describe responsibilities, or
§ may depend on other responsibilities

© Vivek Kumar

6
Andries van Dam ã 2016 09/20/16

Analysis: Identifying Classes
• A partial requirement document

The user must be allowed to specify each product by
its primary characteristics, including its name and
product number. If the bar code does not match the
product, then an error should be generated to the
message window and entered into the error log. The
summary report of all transactions must be structured
as specified in section 7.A.

Of course, not all nouns will correspond to
a class or object in the final solution

7
Andries van Dam ã 2016 09/20/16

Analysis: Guidelines for Discovering Classes

• Limit responsibility of each analysis class
oClear purpose for existence
oAvoid giving too many responsibilities to one class

• Use clear and consistent names
oClass names should be nouns
oNot finding good name implies class is too fuzzy

• Keep analysis classes simple
o In first step don’t worry about class relationships

8
Andries van Dam ã 2016 09/20/16

Exercise: Logging into Email Account
• A partial requirement document

For accessing an online email account, the customer will
first click the login button on the home page of the
email account. This will display the login page of email
account. Once the customer gets directed to the login
page, he will enter his user id and password, and then
click the OK button. The email account will first
validate the customer credentials and then grant access
to his email account.

9
Andries van Dam ã 2016 09/20/16

Exercise: Logging into Email Account
• Step -1: Identifying classes (nouns) and objects

For accessing an online email account, the customer will
first click the login button on the home page of the
email account. This will display the login page of email
account. Once the customer gets directed to the login
page, he will enter his user id and password, and then
click the OK button. The email account will first
validate the customer credentials and then grant access
to his email account.

10
Andries van Dam ã 2016 09/20/16

Exercise: Logging into Email Account
• Step -2: Identifying methods (verbs)

For accessing an online email account, the customer will
first click the login button on the home page of the
email account. This will display the login page of email
account. Once the customer gets directed to the login
page, he will enter his user id and password, and then
click the OK button. The email account will first
validate the customer credentials and then grant access
to his email account.

11
Andries van Dam ã 2016 09/20/16

Design: Classes and Objects
• Recall, class represents a group of objects with

similar behaviors
o Instantiate as many objects as you like!

• If a class becomes too complex, decompose into
multiple smaller classes

• Assign responsibilities to each class
oEvery activity in a program represents methods in a class
o In early stages, begin with primary responsibilities and

evolve the design

12
Andries van Dam ã 2016 09/20/16

Design: Interaction Between Objects
• Sequence diagrams

o Interaction diagrams that details how operations are
carried out in a program

o Messages: Interaction between two objects is
performed as a message sent from one object to
another
§ Help tracing object methods and interactions

o UML is significantly improved version of sequence
diagram
§ We will cover this in depth in later lectures

© Vivek Kumar

13
Andries van Dam ã 2016 09/20/16

Exercise: Logging into Email Account
• Step-3: Draw the sequence diagram

Classes
Customer

HomePage

LoginPage

EmailAccount

Methods
clickLogin

display

enterCredentials

clickOK

validate

14
Andries van Dam ã 2016 09/20/16

Sequence Diagram

clickLogin

<< returns >>

display

enterCredentials

clickOK
validate

Customer HomePage LoginPage EmailAccount

<< returns >>

© Vivek Kumar

15
Andries van Dam ã 2016 09/20/16

Sequence Diagram
Class Name

Object lifespan

Method denoted with
sold arrows

Reply (return)

Message direction

© Vivek Kumar

16
Andries van Dam ã 2016 09/20/16

Cohesion Between Methods

• Methods of an object should be in harmony. If
a method seems out of place, then your object
might be better off by giving that responsibility
to somewhere else

• E.g., for LoginPage class, enterCredentials(),
clickOK() are in harmony but not if we make
validate() as method of LoginPage

17
Andries van Dam ã 2016 09/20/16

Identify Classes Below

18
Andries van Dam ã 2016 09/20/16

Let’s change gears…

How to Work with Objects ?

19
Andries van Dam ã 2016 09/20/16

Review: Instantiation
● Instantiation means

building an object from
its class “blueprint”

● Ex: new Robot();
creates an instance of
Robot

● This calls the Robot
class’s constructor: a
special kind of method

The Robot
class

new Robot();

instance

20
Andries van Dam ã 2016 09/20/16

Review: Constructors

● A constructor is a
method that is called to
create a new object

● Let’s define one for the
Dog class

● All Dogs know how to
bark, eat, and wag their
tails

public class Dog {

 public Dog() {
// this is the constructor!

 }

public void bark(int numTimes) {
// code for barking goes here

}

public void eat() {
// code for eating goes here

}

public void wagTail() {
// code for wagging tail goes here

}
}

21
Andries van Dam ã 2016 09/20/16

Review: Constructors

● Constructors do not
specify a return type

● Name of constructor
must exactly match
name of class

● Now we can instantiate
a Dog in some method:

 new Dog();

public class Dog {

 public Dog() {
// this is the constructor!

 }

public void bark(int numTimes) {
// code for barking goes here

}

public void eat() {
// code for eating goes here

}

public void wagTail() {
// code for wagging tail goes here

}
}

22
Andries van Dam ã 2016 09/20/16

public class Dog {
 private String name;
 private int breed_id;
 private int rego_id;
 private static int rego_counter;

 { // initialization block
 rego_id = ++rego_counter; // line-z
 }
 public Dog(int _breed) {

this.breed_id = _breed; // line-y
 }
 public Dog(String _name) {
 this(20);
 this.name = _name; // line-x
 }

}

Review: Constructors

Question:
• Find the order of execution for following

statement
 Dog djangho = new Dog(“Djangho”);

23
Andries van Dam ã 2016 09/20/16

Variable Declaration & Assignment
Dog django = new Dog();
<type> <name> = <value>;
● The “=” operator assigns

the instance of Dog that we
created to the variable
django. We say “django
gets a new Dog”

● Note that we can reassign
as many times as we like
(example soon)

django

24
Andries van Dam ã 2016 09/20/16

● A variable stores information as either:
o a value of a primitive (aka base) type (like int or float)

o or a reference to an instance (like an instance of Dog) of an
arbitrary type stored elsewhere in memory – we symbolize a
reference with an arrow

● Think of the variable like a box; storing a value or
reference is like putting something into the box

● Primitives have a predictable memory size, while arbitrary
objects vary in size, hence Java simplifies its memory
management by having a fixed size reference to an
instance elsewhere in memory
o “one level of indirectness”

Variables Store Information: Values vs. References
int favoriteNumber = 9;

Dog django = new Dog();

favNumber

9

django

(somewhere else in memory)

25
Andries van Dam ã 2016 09/20/16

Example: Instantiation
public class PetShop {

/*constructor of trivial PetShop! */
public PetShop() {
this.testDjango();

}

public void testDjango() {
Dog django = new Dog();
django.bark(5);
django.eat();
django.wagTail();

}
…

}

● Let’s call the testDjango()
method within the
constructor of the PetShop
class

● Whenever someone
instantiates a PetShop, it in
turn calls testDjango(),
which in turn instantiates a
Dog

● Then it tells the Dog to bark,
eat, and wag its tail

This doesn’t seems
to be the job of
PetShop owner!
Maybe
DogGroomer
should be hired..

26
Andries van Dam ã 2016 09/20/16

Objects as Parameters (1/2)

● Methods can take in objects as
parameters

● The DogGroomer class has a
method groom

● groom method needs to know
which Dog to groom

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
// code that grooms shaggyDog

}
}

nametype

27
Andries van Dam ã 2016 09/20/16

Objects as Parameters (2/2)
● How to call the groom

method?
● Do this in the PetShop

helper method
testGroomer()

● PetShop‘s call to
testGroomer()
instantiates a Dog and a
DogGroomer, then tells the
DogGroomer to groom the
Dog

public class PetShop {

public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);

}

}

28
Andries van Dam ã 2016 09/20/16

What is Memory?
• Memory (system memory, not disk

or other peripheral devices) is the
hardware in which computers store
information, both temporary and
permanent

• Think of memory as a list of slots;
each slot holds information (e.g., a
local int variable, or a reference to
an instance of a class)

• Here, two references are stored in
memory: one to a Dog instance,
and one to a DogGroomer instance

//Elsewhere in the program
Petshop petSmart = new Petshop();

public class PetShop {

public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);

}

}

29
Andries van Dam ã 2016 09/20/16

Objects as Parameters: Under the Hood (1/6)
public class PetShop {

public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);

}

}

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
// code that grooms shaggyDog goes here!

}
}

Somewhere in memory...

30
Andries van Dam ã 2016 09/20/16

Objects as Parameters: Under the Hood (2/6)
public class PetShop {

public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);

}

}

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
// code that grooms shaggyDog goes here!

}
}

Somewhere in memory...

When we instantiate a Dog, he’s stored somewhere in memory. Our PetShop will use the
name django to refer to this particular Dog, at this particular location in memory.

31
Andries van Dam ã 2016 09/20/16

Objects as Parameters: Under the Hood (3/6)
public class PetShop {

public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);

}

}

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
// code that grooms shaggyDog goes here!

}
}

Somewhere in memory...

The same goes for the DogGroomer—we store a particular DogGroomer somewhere in
memory. Our PetShop knows this DogGroomer by the name groomer.

32
Andries van Dam ã 2016 09/20/16

Objects as Parameters: Under the Hood (4/6)
public class PetShop {

public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);

}

}

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
// code that grooms shaggyDog goes here!

}
}

Somewhere in memory...

We call the groom method on our DogGroomer, groomer. We need to tell her which Dog to groom
(since the groom method takes in a parameter of type Dog). We tell her to groom django.

33
Andries van Dam ã 2016 09/20/16

Objects as Parameters: Under the Hood (5/6)
public class PetShop {

public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);

}

}

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
// code that grooms shaggyDog goes here!

}
}

Somewhere in memory...

When we pass in django as an argument to the groom method, we’re telling the groom
method about him. When groom executes, it sees that it has been passed that particular Dog.

34
Andries van Dam ã 2016 09/20/16

Objects as Parameters: Under the Hood (6/6)
public class PetShop {

public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);

}

}

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
// code that grooms shaggyDog goes here!

}
}

Somewhere in memory...

The groom method doesn’t really care which Dog it’s told to groom—no matter what another
object’s name for the Dog is, groom is going to know it by the name shaggyDog.

35
Andries van Dam ã 2016 09/20/16

Variable Reassignment (1/2)

● After giving a variable an initial
value, we can reassign it (make it
refer to a different object)

● What if we wanted our
DogGroomer to groom two different
Dogs when the PetShop opened?

● Could re-use the variable django
to first point to one Dog, then
another!

public class PetShop {

/* This is the constructor! */
public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);

}

}

36
Andries van Dam ã 2016 09/20/16

Variable Reassignment (2/2)

● First, instantiate another Dog, and
reassign variable django to point to it

● Now django no longer refers to the
first Dog instance we created, which
has already been groomed

● We then tell groomer to groom the
newer Dog

public class PetShop {

/* This is the constructor! */
public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);
django = new Dog(); // reassign django
groomer.groom(django);

}

}

37
Andries van Dam ã 2016 09/20/16

Variable Reassignment: Under the Hood (1/5)
public class PetShop {

/* This is the constructor! */
public PetShop() {

this.testGroomer();
}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);
django = new Dog();
groomer.groom(django);

}

}

38
Andries van Dam ã 2016 09/20/16

Variable Reassignment: Under the Hood (2/5)
public class PetShop {

/* This is the constructor! */
public PetShop() {

this.testGroomer();
}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);
django = new Dog();
groomer.groom(django);

}

}

39
Andries van Dam ã 2016 09/20/16

Variable Reassignment: Under the Hood (3/5)
public class PetShop {

/* This is the constructor! */
public PetShop() {

this.testGroomer();
}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);
django = new Dog();
groomer.groom(django);

}

}

40
Andries van Dam ã 2016 09/20/16

Variable Reassignment: Under the Hood (4/5)
public class PetShop {

/* This is the constructor! */
public PetShop() {

this.testGroomer();
}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);
django = new Dog();
groomer.groom(django);

}

}

//old ref garbage collected

41
Andries van Dam ã 2016 09/20/16

Variable Reassignment: Under the Hood (5/5)
public class PetShop {

/* This is the constructor! */
public PetShop() {

this.testGroomer();
}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);
django = new Dog();
groomer.groom(django);

}

}

//old ref garbage collected

42
Andries van Dam ã 2016 09/20/16

Local Variables (1/2)
● All variables we’ve seen so

far have been local
variables: variables declared
within a method

● Problem: the scope of a local
variable (where it is known
and can be accessed) is
limited to its own method—it
cannot be accessed from
anywhere else
o the same is true of method

parameters

public class PetShop {

/* This is the constructor! */
public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);
django = new Dog();
groomer.groom(django);

}

}

local variables

43
Andries van Dam ã 2016 09/20/16

Local Variables (2/2)

● We created groomer and
django in our PetShop’s
helper method, but as far as
the rest of the class is
concerned, they don’t exist

● What happens to django after
the method is executed?
● “Garbage Collection”

public class PetShop {

/* This is the constructor! */
public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);
django = new Dog();
groomer.groom(django);

}

}

local variables

44
Andries van Dam ã 2016 09/20/16

Accessing Local Variables
• If you try to access a local

variable outside of it’s
method, you’ll receive a
“cannot find symbol”
compilation error.

public class PetShop {

private DogGroomer _groomer;

/* This is the constructor! */
public PetShop() {

_groomer = new DogGroomer();
Dog django = new Dog();

}

public void exerciseDjango() {
django.playCatch();.

}

}

In Terminal:
Petshop.java:13: error: cannot find symbol
 django.playCatch();
 ^
 symbol: variable django
 location: class PetShop

45
Andries van Dam ã 2016 09/20/16

Instance Variables for the Rescue

● Local variables aren’t always what we want. We’d like every
PetShop to come with a DogGroomer who exists for as long
as the PetShop exists

● That way, as long as the PetShop is in business, we’ll have
our DogGroomer on hand

● We can accomplish this by storing the DogGroomer in an
instance variable

46
Andries van Dam ã 2016 09/20/16

What’s an Instance Variable?
● An instance variable models a property

that all instances of a class have
o its value can differ from instance to instance

(e.g, the dog’s breed, name, color, …)
● Instance variables are declared within a

class, not within a single method, and
are accessible from anywhere within the
class – its scope is the entire class

● Instance variables and local variables
are identical in terms of what they can
store—either can store a base type (like
an int) or a reference to an object
(instance of some other class)

47
Andries van Dam ã 2016 09/20/16

Instance Variables
● We’ve modified PetShop example to

make our DogGroomer an instance
variable

● Split up declaration and assignment of
instance variable:
o declare instance variable

o initialize the instance variable by assigning a
value to it in the constructor

o purpose of constructor is to initialize all
instance variables so the instance has a valid
initial “state” at its “birth”

o state is the set of all values for all properties—
local variables don’t hold properties - they are
“temporaries”

public class PetShop {

private DogGroomer _groomer;

/* This is the constructor! */
public PetShop() {
_groomer = new DogGroomer();
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();//local var
_groomer.groom(django);

}

}

declaration

assignment

48
Andries van Dam ã 2016 09/20/16

Always Remember to Initialize!

● What if you declare an instance
variable, but forget to initialize it?

● The instance variable will
assume a “default value”

o if it’s an int, it will be 0

o if it’s an object, it will be null—
a special value that means your
variable is not referencing any
instance at the moment

public class PetShop {

private DogGroomer _groomer;

/* This is the constructor! */
public PetShop() {
//oops!
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();//local var
_groomer.groom(django);

}

}

49
Andries van Dam ã 2016 09/20/16

NullPointerExceptions

● If a variable’s value is null and
you try to give it a command,
you’ll be rewarded with a runtime
error—you can’t call a method
on “nothing”!

● This particular error yields a
NullPointerException

● When you run into one of these
(we promise, you will)—edit your
program to make sure you have
explicitly initialized all variables

public class PetShop {

private DogGroomer _groomer;

public PetShop() {
//oops!
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();//local var
_groomer.groom(django);

}

}

NullPointerException

50
Andries van Dam ã 2016 09/20/16

Next Lecture
• Class relationships

