
1

Lecture 03: Class Relationships
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE201: Advanced Programming

2

Last Lecture
• Program development

• Identifying classes and objects

• Sequence diagrams

• Working with objects
o Objects as parameters
o Variable reassignment
o Instance variables

3

This Lecture

• Class relationships

Slide acknowledgements: Internet resources + CS15, Brown University

4

UML: Quick Introduction
• UML stands for the Unified Modeling Language

o We will cover this in depth in later lectures

• Much detailed than sequence diagrams

• UML diagrams show relationships among classes and
objects
o Lines connecting the classes

• A UML class diagram consists of one or more classes, each
with sections for the class name, attributes (data), and
operations (methods)

© Vivek Kumar

5

A Sample UML Class Diagram

Player
Attributes

Die
Attributes
MethodsMethods

© Vivek Kumar

6

Class Relationships
• The whole point of OOP is that your code

replicates real world objects, thus making your
code readable and maintainable

• When we say real world, the real world has
relationships

• When writing a program, need to keep in mind
“big picture”—how are different classes related
to each other?

© Vivek Kumar

7

Most Common Class Relationships
• Composition

o A “contains” B
• Association

o A “knows-about” B
• Dependency

o A “depends on” B
• Inheritance

o HarleyDavidson “is-a” Bike

© Vivek Kumar

8

Composition Relationship
• Class A contains object of class B

o A instantiate B
• Thus A knows about B and can call methods on it
• But this is not symmetrical! B can’t automatically call

methods on A
• Lifetime?

o The death relationship
o Garbage collection of A means B also gets garbage

collected

© Vivek Kumar

9

Composition in UML

A
Attributes
Methods

B
Attributes
Methods

• Represented by a solid arrow with diamond head
• In below UML diagram, A is composed of B

© Vivek Kumar

10

Composition Example (1/2)

• Manager is fixed for a
project and is responsible
for the timely completion
of the project. If manager
leaves, project is ruined

class Project {
 private String name;
 public boolean status() { ... }

}
// A manager is fixed for a project
class Manager {
 private Project project;
 public Manager() {
 this.project = new Project(“ABC”);
 }
 public boolean projectCompleted() {
 return project.status();
 }
}

Manager
project

projectCompleted()

Project
name
status()

© Vivek Kumar

11

Composition Example (2/2)
● PetShop contains a DogGroomer

● Composition relationship because
PetShop itself instantiates a
DogGroomer with

“new DogGroomer();”

● Since PetShop created a
DogGroomer and stored it in an
instance variable, all PetShop’s
methods “know” about the
_groomer and can access it

public class PetShop {

private DogGroomer _groomer;

public PetShop() {
_groomer = new DogGroomer();
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();//local var
_groomer.groom(django);

}

}
Andries van Dam © 2016 9/22/16

12

Association Relationship
• Association is a relationship between two objects
• Class A and class B are associated if A “knows

about” B, but B is not a component of A
• But this is not symmetrical! B “doesn’t knows

about” A
• Class A holds a class level reference to class B
• Lifetime?

o Objects of class A and B have their own lifetime, i.e.,
they can exist without each other

13

Association in UML

A
Attributes
Methods

B
Attributes
Methods

• Represented by a solid arrow
• In below UML diagram, A holds a reference of B

© Vivek Kumar

14

Association Example (1/4)
• A contractor’s project

keep’s changing as per
company’s policy and
contractor’s performance

class Project {
 private String name;
 public boolean status() { ... }

}
// Contractor’s project keep changing
class Contractor {
 private Project currentProject;
 public Contractor(Project proj) {
 this.currentProject = proj;
 }
 public void setProject(Project proj){
 this.currentProject = proj;
 }
}

Contractor
currentProject
setProject()

Project
name
status()

© Vivek Kumar

15

Associations Example (2/4)

● Association means that one
object knows about another
object that is not one of its
components

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
shaggyDog.setHairLength(1);

}
}

Andries van Dam © 2016 9/22/16

16

Associations Example (2/4)

● As noted, PetShop contains a
DogGroomer, so it can send
messages to the DogGroomer

● But what if the DogGroomer
needs to send messages to the
PetShop she works in?
o the DogGroomer probably needs

to know several things about her
PetShop: for example, operating
hours, grooming supplies in stock,
customers currently in the shop...

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
shaggyDog.setHairLength(1);

}
}

Andries van Dam © 2016 9/22/16

17

Associations Example (2/4)

● The PetShop keeps track of
such information in its properties

● Can set up an association so
that DogGroomer can send her
PetShop messages to retrieve
information she needs

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
shaggyDog.setHairLength(1);

}
}

Andries van Dam © 2016 9/22/16

18

Associations Example (2/4)

● This is what the full association
looks like

● Let’s break it down line by line
● But note we’re not yet making

use of the association in this
fragment

public class DogGroomer {

 private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {
_petShop = myPetShop; // store the assoc.

}

public void groom(Dog shaggyDog) {
shaggyDog.setHairLength(1);

}
}

Andries van Dam © 2016 9/22/16

19

Associations Example (2/4)

● We declare an instance variable
named _petShop

● We want this variable to record
the instance of PetShop that the
DogGroomer belongs to

public class DogGroomer {

 private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {
_petShop = myPetShop; // store the assoc.

}

public void groom(Dog shaggyDog) {
shaggyDog.setHairLength(1);

}
}

Andries van Dam © 2016 9/22/16

20

Associations Example (2/4)
● Modified DogGroomer’s

constructor to take in a
parameter of type PetShop

● Constructor will refer to it by the
name myPetShop

● Whenever we instantiate a
DogGroomer, we’ll need to pass
it an instance of PetShop as an
argument. Which? The PetShop
instance that created the
DogGroomer, hence use this

public class DogGroomer {
 private PetShop _petShop;

 public DogGroomer(PetShop myPetShop) {
 _petShop = myPetShop; // store the assoc.
 }
 //groom method elided
}

public class PetShop {
 private DogGroomer _groomer;

 public PetShop() {
 _groomer = new DogGroomer(this);
 this.testGroomer();
 }

 //testGroomer() elided
}

Andries van Dam © 2016 9/22/16

21

Associations Example (2/4)

● Now store myPetShop in
instance variable _petShop

● _petShop now points to same
PetShop instance passed to its
constructor

● After constructor has been
executed and can no longer
reference myPetShop, any
DogGroomer method can still
access same PetShop instance
by the name _petShop

public class DogGroomer {

 private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {
_petShop = myPetShop; // store the assoc.

}

public void groom(Dog shaggyDog) {
shaggyDog.setHairLength(1);

}
}

Andries van Dam © 2016 9/22/16

22

Associations Example (2/4)
● Let’s say we’ve written an accessor

method and a mutator method in the
PetShop class:
getClosingTime() and
setNumCustomers(int customers)

● If the DogGroomer ever needs to
know the closing time, or needs to
update the number of customers,
she can do so by calling
o getClosingTime()

o setNumCustomers(int customers)

public class DogGroomer {

private PetShop _petShop;
private Time _closingTime;

public DogGroomer(PetShop myPetShop) {
_petShop = myPetShop; // store assoc.
_closingTime = myPetShop.getClosingTime();
_petShop.setNumCustomers(10);

}
}

Andries van Dam © 2016 9/22/16

23

public class PetShop {
private DogGroomer _groomer;

public PetShop() {
_groomer = new DogGroomer(this);
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
_groomer.groom(django);

}
}

public class DogGroomer {
private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {
_petShop = myPetShop;

}

/* groom and other methods elided for this
example */

}

Somewhere in memory...

Association: Under the Hood (1/5)

Andries van Dam © 2016 9/22/16

24

public class PetShop {
private DogGroomer _groomer;

public PetShop() {
_groomer = new DogGroomer(this);
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
_groomer.groom(django);

}
}

public class DogGroomer {
private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {
_petShop = myPetShop;

}

/* groom and other methods elided for this
example */

}

Somewhere in memory...

Association: Under the Hood (2/5)

Somewhere else in our code, someone calls new PetShop(). An instance of PetShop is created somewhere in
memory and PetShop’s constructor initializes all its instance variables (just a DogGroomer here)

Andries van Dam © 2016 9/22/16

25

public class PetShop {
private DogGroomer _groomer;

public PetShop() {
_groomer = new DogGroomer(this);
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
_groomer.groom(django);

}
}

public class DogGroomer {
private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {
_petShop = myPetShop;

}

/* groom and other methods elided for this
example */

}

Somewhere in memory...

Association: Under the Hood (3/5)

The PetShop instantiates a new DogGroomer, passing itself in as an argument to the DogGroomer’s constructor
(remember the this keyword?)

Andries van Dam © 2016 9/22/16

26

public class PetShop {
private DogGroomer _groomer;

public PetShop() {
_groomer = new DogGroomer(this);
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
_groomer.groom(django);

}
}

public class DogGroomer {
private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {
_petShop = myPetShop;

}

/* groom and other methods elided for this
example */

}

Somewhere in memory...

Association: Under the Hood (4/5)

When the DogGroomer’s constructor is called, its parameter, myPetShop, points to the same PetShop that was
passed in as an argument.

Andries van Dam © 2016 9/22/16

27

public class PetShop {
private DogGroomer _groomer;

public PetShop() {
_groomer = new DogGroomer(this);
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
_groomer.groom(django);

}
}

public class DogGroomer {
private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {
_petShop = myPetShop;

}

/* groom and other methods elided for this
example */

}

Somewhere in memory...

Association: Under the Hood (5/5)

The DogGroomer sets its _petShop instance variable to point to the same PetShop it received as an argument.
Now it “knows about” the petShop that instantiated it! And therefore so do all its methods...

Andries van Dam © 2016 9/22/16

28

Associations Example (3/4)
public class Professor {

// declare instance variables here
// and here…
// and here…

 // and here!

public Professor(/* parameters */) {

// initialize instance variables!
// …
// …

 // …
}

/* additional methods elided */
}

● Here we have the class
Professor

● We want Professor to know
about his TAs—he didn’t create
them or vice versa, hence no
containment – they are peer
objects

● Let’s set up associations!

Andries van Dam © 2016 9/22/16

29

Associations Example (3/4)
public class Professor {

// declare instance variables here
// and here…
// and here…

 // and here!

public Professor(/* parameters */) {

// initialize instance variables!
// …
// …

 // …
}

/* additional methods elided */
}

● The Professor needs to know
about 4 TAs, all of whom will be
instances of the class TA

● Once he knows about them, he
can call methods of the class
TA on them: remindTA,
runRefresherModule, etc.

● Take a minute and try to fill in
this class

Andries van Dam © 2016 9/22/16

30

Associations Example (3/4)
public class Professor {

private TA _ta1;
private TA _ta2;
private TA _ta3;

 private TA _ta4;

public Professor(TA firstTA,
TA secondTA, TA thirdTA
TA fourthTA) {

_ta1 = firstTA;
_ta2 = secondTA;
_ta3 = thirdTA;

 _ta4 = fourthTA;
}

/* additional methods elided */
}

● Here’s our solution!
● Remember, you can choose

your own names for the
instance variables and
parameters

● The Professor can now send a
message to one of his TAs like
this:
_ta1._runRefresherModule();

Andries van Dam © 2016 9/22/16

31

public class Course {

// declare Professor instance var.
// declare four TA instance vars.
// …
// …

 // …

public Course() {
// instantiate the four TAs
// …
// …
// instantiate the professor!

}
}

● We’ve got the Professor
class down

● Now let’s create a professor
and TAs from a class that
contains all of them: Course

● Try and fill in this class!
o You can assume that the TA

class takes no parameters in its
constructor.

Associations Example (3/4)

Andries van Dam © 2016 9/22/16

32

public class Course {

private Professor _vivek;
private TA _akanksha;
private TA _akash;
private TA _alind;

 private TA _abhiprayah;

public Course() {
_akanksha = new TA();
_akash = new TA();
_alind = new TA();
_abhiprayah = new TA();

 _vivek = new Professor(_akanksha,
 _akash , _alind , _abhiprayah);
}

}

● We declare _vivek,
_akanksha, _akash, _alind
and _abhiprayah as instance
variables

● In the constructor, we
instantiate them

● Since the constructor of
Professor takes in 4 TAs, we
pass in _akanksha, _akash,
_alind and _abhiprayah

Associations Example (3/4)

Andries van Dam © 2016 9/22/16

33

public class Course {

private Professor _vivek;
private TA _akanksha;
private TA _akash;
private TA _alind;

 private TA _abhiprayah;

public Course() {
_akanksha = new TA();
_akash = new TA();
_alind = new TA();
_abhiprayah = new TA();

 _vivek = new Professor(_akanksha,
 _akash , _alind , _abhiprayah);
}

}

public class Professor {

private TA _ta1;
private TA _ta2;
private TA _ta3;

 private TA _ta4;

public Professor(TA firstTA,
TA secondTA, TA thirdTA
TA fourthTA){

_ta1 = firstTA;
_ta2 = secondTA;
_ta3 = thirdTA;

 _ta4 = fourthTA;
_ta1.runRefresherModule();

}
/* additional methods elided */

}

Associations Example (3/4)

Andries van Dam © 2016 9/22/16

34

Associations Example (4/4)
public class Course {

private Professor _vivek;
private TA _akanksha;
private TA _akash;
private TA _alind;

 private TA _abhiprayah;

public Course() {
_akanksha = new TA();
_akash = new TA();
_alind = new TA();
_abhiprayah = new TA();

 _vivek = new Professor(_akanksha,
 _akash , _alind , _abhiprayah);
}

}

● What if we want the TAs to
know about Professor
too?

● Need to set up another
association

● Can we just do the same
thing?

Andries van Dam © 2016 9/22/16

35

Associations Example (4/4)
public class Course {

private Professor _vivek;
private TA _akanksha;
private TA _akash;
private TA _alind;

 private TA _abhiprayah;

public Course() {
_akanksha = new TA();
_akash = new TA();
_alind = new TA();
_abhiprayah = new TA();

 _vivek = new Professor(_akanksha,
 _akash , _alind , _abhiprayah);
}

}

● This doesn’t work: when we
instantiate _akanksha,
_akash, _alind and
_abhiprayah, we would like
to pass them an argument,
_vivek

● But _vivek hasn’t been
instantiated yet! And can’t
initialize _vivek first
because the TAs haven’t
been created yet…

● What can we try instead?
Andries van Dam © 2016 9/22/16

36

Associations Example (4/4)
public class Course {

private Professor _vivek;
private TA _akanksha;
private TA _akash;
private TA _alind;

 private TA _abhiprayah;

public Course() {
_akanksha = new TA();
_akash = new TA();
_alind = new TA();
_abhiprayah = new TA();

 _vivek = new Professor(_akanksha,
 _akash , _alind , _abhiprayah);

}
}

● Need a way to pass _vivek
to _akanksha, _akash,
_alind and _abhiprayah
after we instantiate _vivek

● Use a new method,
setProf, and pass each TA
_vivek

Andries van Dam © 2016 9/22/16

37

public class TA {

 private Professor _professor;

public TA() {

//Other code elided

}

public void setProf(Professor prof) {
_professor = prof;

}
}

● Now each TA will know about
_vivek!

public class Course {

private Professor _vivek;
private TA _akanksha;
private TA _akash;
private TA _alind;

 private TA _abhiprayah;

public Course() {
_akanksha = new TA();
_akash = new TA();
_alind = new TA();
_abhiprayah = new TA();

 _vivek = new Professor(_akanksha,
 _akash , _alind , _abhiprayah);

_akanksha.setProf(_vivek);
_akash.setProf(_vivek);
_alind.setProf(_vivek);
_abhiprayah.setProf(_vivek);

}
}

Associations Example (4/4)

Andries van Dam © 2016 9/22/16

38

Question

● What happens if setProf is never called?
● Will the TAs be able to call methods on the Professor?

Andries van Dam © 2016 9/22/16

39

Dependency

• Class A depends on class B if A cannot carry out its
work without B, but B is neither a component of A
nor it has association with A

• A is requesting service from an object of class B
o A or B “doesn’t know” about each other (no association)
o A or B “doesn’t contain” each other (no composition)

• But this is not symmetrical! B doesn’t depends on A

© Vivek Kumar

40

Dependency in UML

A
Attributes
Methods

B
Attributes
Methods

• Represented by a dashed arrow starting from
the dependent class to its dependency
oA is dependent on B
oA is requesting service from B

© Vivek Kumar

41

Dependency Example (1/3)

Player

takeTurn()

Die

faceValue
faces

roll()

class Die {
 private int faceValue, faces;

 public void roll() { }
}

class Player {
 public void takeTurn(Die die) {
 die.roll();
 }
}

© Vivek Kumar

42

Dependency Example (2/3)

Cart
cartPrice
addProduct

Product
price
getPrice()

class Product {
 private double price;

 public double getPrice() { }
}

class Cart {
 private double cartPrice;
 public void addProduct(Product p) {
 cartPrice += p.getPrice();
 }
}

© Vivek Kumar

43

Dependency Example (3/3)

CourseSchedule

total
courses
add()
drop()

Course
name

getName()

class Course {
 private String name;

 public String getName() { }
}

class CourseSchedule {
 private int total;
 private String courses[];
 public void addCourse(Course c) {
 courses[total++] = c.getName();
 }

}

© Vivek Kumar

44

Next Lecture
• Interfaces in Java
• Quiz-1

oSyllabus: Lecture 01-03
• Assignment-1 to be announced on 09/08 evening

