CSE201: Advanced Programming

Lecture 04:Interfaces in Java

Vivek Kumar
Computer Science and Engineering
I1IT Delhi
vivekk@iiitd.ac.in

Last Lecture

® Class relationships

o When writing a program, need to keep in mind “big picture”—
how are different classes related to each other?

o Association

. Class A and class B are associated if A “knows about” B,
but B is not a component of A

. Class A holds a class level reference to class B
o Composition

. Class A contains object of class B

. A instantiate B

. The death relationship

. B is garbage collected when A gets garbage collected
o Dependency
= Neither class A or class B “knows about” each other, nor

one of them is a “component” of the other. However, if A
rBequests a service from B then A is said to be dependent on

class Cart {
private double price;
public void addProduct (Product P) {
price+=P.getPrice () ;

class Project {
private String name;
public boolean status() { ... }

// Contractor’s project keep changing
class Contractor {
private Project currentProject;
public Contractor(Project proj) {
this.currentProject = proj;
}
public void setProject(Project proj){
this.currentProject = proj;

}
}

class Project {
private String name;
public boolean status() { ... }

// A manager is fixed for a project
class Manager {
private Project project;
public Manager() {
this.project = new Project(“ABC”);
}
public boolean projectCompleted() {
return project.status();

}
}

This Lecture

® Interfaces in Java

o Declaring
o Defining

® Quiz-1

Slide acknowledgements: CS15, Brown University

Recall: Declaring vs. Defining Methods

® \Vhat's the difference public class Dog {
between declaring and //constructor elided
deﬁning a method? public void makeSounds() {
o method declaration is the this.bark();

this.whine();

scope (public), return type this.bark();

(void), name and parameters

(makeSounds ()) p})ublic void bark() {
o method definition is the body //code elided

of the method — the actual }

implementation (the code that public void whine() {

actually makes the sounds) } //code elided

Andries van Dam © 2016 9/22/16

Using What You Know

® Imagine this program:

o Sophia and Dan are racing from their home to city center
= whoever gets there first, wins!
= catch: they don’t get to choose their method of transportation

® Design a program that
o assigns mode of transportation to each racer
o starts the race

® For now, assume transportation options are and

Andries van Dam © 2016 9/22/16

What does our design look like?

App

I

Race

/—\

® Imagine this program:

o Sophia and Dan are racing from
their home to city center
= whoever gets there first, wins!

= catch: they don't get to choose
their method of transportation

® Design a program that

CarRacer

BikeRacer

t

t

o assigns mode of transportation to
each racer

o starts the race

Car

Bike

® For now, assume transportation
options are and

Andries van Dam © 2016 9/22/16

Goal 1: Assign transportation to each racer

® Need transportation classes (something to give to racers)
® Let's use and classes

® Both classes will need to describe how the transportation
moves
O needs drive method

O needs pedal method

L Ap |
Coding the project (1/4) /jk

® Let's build transportation classes

public class {

public () {//constructor
//code elided

}

public void drive(){
//code elided

}

//more methods elided

ndries van Dam © 2016 9/22/16

| CarRacer | l BikeRacer |
| Car | | Bike |
public class {
public () {//constructor

//code elided

}

public void pedal(){
//code elided

}

//more methods elided

Goal 1: Assign transportation to each racer

® Need racer classes that will use their type of transportation

O
O

® \What methods will we need? What capabilities should
each class have?

® needs to know when to use the car
o write useCar() method
® needs to know when to use the bike

o write useBike () method

Coding the project (2/4)

® Let’s build the racer classes

public class CarRacer {
private _car;

public CarRacer() {
_car = new OF

}

public void useCar(){
_car.drive();

¥

//more methods elided

Andries van Dam © 2016 9/22/16

AfD

Race

| CarRacer

| BikeRacer |

| Car

|

Bike

public class BikeRacer {

private _bike;

public BikeRacer() {
_bike = new ()

}

public void useBike(){
_bike.pedal();

}
//more methods elided

Goal 2: Tell the racers to start the race

® Race class contains Racers
. startRace:
O App contains Race Tell dan to useCar

. Tell sophia to useBike
® Race class will have
startRace() method

o startRace() tells each racer
to use their transportation

® startRace() gets called in
App

10

® Let’s build the Race class

L App
Coding the project (3/4) /jk

| CarRacer | | BikeRacer |

| Car | |

Bike

public class Race {
private CarRacer _dan;
private BikeRacer _sophia;

public Race() {
_dan = new CarRacer();
_sophia = new BikeRacer();

}

public void startRace() {
_dan.useCar();
_sophia.useBike();

11

Andries van Dam © 2016 9/22/16

Coding the project (4/4) S

public class App {
Race race;

public App() {

}

race = new Race();
race.startRace();

public static void main (String[] args) {

}

new App();

Andries van Dam © 2016 9/22/16

’ Afp |

| CarRacer | | BikeRacer |

| Car | | Bike |

® Now build the App
class

® Now the race to the
city center!

12

Recap: What does our design look like?

App

I

Race

/-\

CarRacer BikeRacer
Car Bike

Andries van Dam © 2016 9/22/16

How would this program run?

An instance of gets initialized
’s constructor initializes an instance

of
's constructor initializes _dan
()and sophia ()
's constructor initializes a
_car (Car)

's constructor initializes
a bike
App calls race.startRace()
race calls dan.useCar() and
_sophia.useBike()
_dan calls _car.drive()
_sophia calls bike.pedal()

13

Can we do better?

Things to think about

® Do we need two different

o Want multiple instances of
transportation

o But how?

classes?
that use different modes of

15

Solution 1: Create one Racer class with methods!

® Create one Racer class

o define different methods for each
type of transportation

® danis instance of Racer and
elsewhere we have:

dansCar = new ()
_dan.useCar(dansCar);

@ 's drive() method will be invoked

® But any given instance of Racer
will need a new method to
accommodate every kind of
transportation!

Andries van Dam © 2016 9/22/16

public class Racer {
public Racer(){

//constructor

}

public void useCar(myCar){
myCar.drive();

}

public void useBike(myBike){

myBike.pedal();
} }
Question: What is the relationship
between Racer+Car and
Racer+Bike? 16

Solution 1 Drawbacks

® Now imagine 10
people join the
race and so there
are 10 different
modes of
transportation

Writing these
similar useType()
methods are a lot
of work for you, the
developer, and
inefficient coding
style

public class Racer {

public Racer() {

//constructor
}
public void useCar(myCar){//code elided}
public void useBike(myBike){//code elided}
public void useHoverboard(myHb){//code elided}
public void useHorse(myHorse){//code elided}
public void useScooter(myScooter){//code elided}
public void useMotorcycle(myMc) {//code elided}
public void usePogoStick(myPogo){//code elided}
// And more..

17

Andries van Dam © 2016 9/22/16

Is there another solution?

Racer

useCar(Car car)
useBike(Bike bike)

useHorse(Horse horse)
useScooter(Scooter scooter)

useHoverBoard(HoverBoard hoverboard)

useMotorcycle(Motorcycle motorcycle)
usePogoStick(PogoStick pogo)

Racer

® Can we go from left to right?

Andries van Dam © 2016 9/22/16

useTransportation()

18

Interfaces: Spot the Similarities

e \What do cars and bikes have in common?
e \What do cars and bikes not have in common?

19

Cars vs. Bikes

Cars Bikes

e Play radio
e Turn off/on headlights
e Turn off/on turn signal
e Lock/unlock doors

e Drop kickstand
e Change gears

Digging deeper into the similarities

® How similar are they when they
move?
o do they move in same way?

/| emove | ® Not very similar
o cars drive
o Dbikes pedal

® Both can move, but in different
ways

21

Can we model this in code?

Many real-world objects have
several broad similarities

o cars and bikes can move

o cars and laptops can play radio

Take Car and Bike class

o how can their similar
functionalities get enumerated in
one place?

o how can their broad relationship
get portrayed through code?

Andries van Dam © 2016 9/22/16

Car
playRadio()
lockDoors()
unlockDoors()

drive()

Bike
dropKickstand()
changeGears()
pedal()

22

Introducing Interfaces

Interfaces group similar capabilities/function of different
classes together

Model “acts-as” relationship

s and s could implement a Transporter interface

o they can transport people from one place to another

o “act as” transporters
= objects that can move
* have shared functionality, such as moving, braking, turning etc.

o for this lecture, interfaces are green and classes that

Implement them
23

Introducing Interfaces

Interfaces are contracts that classes agree to

If classes choose to implement given interface, it must define all
methods declared in interface

o Iif classes don’t implement one of interface’s methods, the compiler raises
error
» |ater we'll discuss strong motivations for this contract enforcement

Interfaces don’t define their methods - implementing classes do

o Interfaces only care about the fact that the methods get defined - not how
— Implementation-agnostic

Models similarities while ensuring consistency
o What does this mean?

24

Andries van Dam © 2016 9/22/16

Let’s break that down

1) Models Similarities

2) Ensures Consistency

25

Models Similarities While Ensuring Consistency

® How does this help our program?

® \We know s and s both need to move
o l.e., should all have some move()method
o let compiler know that too!

® Let's make the Transporter interface!

o what methods should the Transporter interface declare?

= move()
= only using a move() for simplicity, but brake (), etc. would also be useful

o compiler doesn’t care how method is defined, just that it's been defined

o general tip: methods that interface declares should model functionality all

iImplementing classes share
26

Andries van Dam © 2016 9/22/16

Declaring an Interface (1/4)

What does this look like?

public interface Transporter { ® That'sit!
public void move(); ® Interfaces, just like classes,
have their own . java file.
J This file would be

Transporter. java

27

Declaring an Interface (2/4)

What does this look like?

public interface Transporter { ® Declare it as interface rather
than class

public void move();

28

Declaring an Interface (3/4)

What does this look like? ® Declare methods - the
contract
public interface Transporter { ® In this case only one

method required: move()

® All classes that sign contract
(implement this interface)
must define actual
iImplementation of any
declared methods

public void move();

29

Declaring an Interface (4/4)

What does this look like? ® Interfaces are only
contracts, not classes that
public interface Transporter { can be instantiated

® Interfaces can only declare
methods - not define them

® Notice: method declaration
end with semicolons, not
curly braces!

public void move();

30

Questions

Which line(s) of this program is incorrect?

A. public interface Colorable { C. public class Rectangle implements Colorable {
public Color getColor() { //co_nstructor elided
B. return Color.WHITE; public Color getColor() {
} D. return Color.PURPLE;
} }

31

Andries van Dam © 2016 9/22/16

Implementing an Interface (1/6)

Let’'s modify

public class implements Transpo

public () {

}

// constructor

public void drive() {

}

// code for driving the car

rter {

ndries van Dam © 2016 9/22/16

Let’'s modify to implement

Transporter

o declare that “acts-as”
Transporter

Add implements
Transporter to class
declaration

Promises compiler that will
define all methods in

Transporter interface
o i.e.,move()

Will this code compile?

32

Implementing an Interface (2/6)

“Error: does not override

public class implements Transporter { method move() in Transporter” *

public () {
// constructor

) ® Will this code compile?
o hope :(
public void drive() { ® Neverimplemented move() and
// code for driving the car drive() - doesn't suffice.
} Compiler will complain accordingly
}
*Note: the full error message is * is not abstract and does not override abstract

method move() in Transporter.” We’'ll get more into the meaning of abstract in a later lecture.

33

Andries van Dam © 2016 9/22/16

Implementing an Interface (3/6)

public class implements Transporter { ®

public () {
// constructor

}

public void drive() {
//code for driving car

}

@Override
public void move() {
this.drive();

}

ndries van Dam © 2016 9/22/16

Next: honor contract by
defining a move () method
Method signature (name
and number/type of
arguments) must match
how its declared in
interface

34

Implementing an Interface (4/6)

What does @Override mean?

public class implements Transporter {

public () {
// constructor

}

public void drive() {
//code for driving car

}

@Override
public void move() {
this.drive();

}

ndries van Dam © 2016 9/22/16

Include @Override right above the
method signature

@Override is an annotation —a
signal to the compiler (and to
anyone reading your code)

o allows compiler to enforce that
interface actually has method
declared

o more explanation of @Override in
next lecture

Annotations, like comments, have

no effect on how code behaves at

runtime

35

Implementing an Interface (5/6)

Defining interface method is like defining any other method
Definition can be as complex or as simple as it needs to be

public class

Ex.: Let's modify

What will instance of

public () {
//code elided

}

public void drive(){
//code elided

}

@Override

public void move(){
this.drive();
this.brake();
this.drive();

¥

//more methods elided

implements Transporter {

Andries van Dam © 2016 9/22/16

's move method to include braking
do if move () gets called on it?

public class Racer {

//previous code elided
public void useTransportation(
Transporter transport) {
transport.move(); //Polymorphism

36

Implementing an Interface (6/6)

classes can implement multiple
interfaces public void setColor(Color c);

: ublic Color getColor();
o “l signed my rent agreement, so I'm a g & O

renter, but | also signed my }
employment contract, so I'm an
employee. I'm the same person.”

_ ublic class implements Transporter, Colorable
o what if | wanted to change color P g g {
as well? public Car(){ //body elided }
o create a Colorable interface public void drive(){ //body elided }
o add that interface to Car’s class public void move(){ //body elided }
declaration public void setColor(Color c){ //body elided }

_ , public Color getColor(){ //body elided }
® Implementing class must define every | 1

single method in each of its interfaces

37

Andries van Dam © 2016 9/22/16

Summary

® Interfaces are formal contracts and ensure
consistency

o compiler will check to ensure all methods
declared in interface are defined

® Can trust that any object from class that
Implements Transporter can move()

® \Will know how 2 classes are related if both
Implement Transporter

38

Question

Given the following interface:

public interface Clickable {
public void click();
}

Which of the following would work as an implementation of the Clickable
interface? (don’t worry about what changeXPosition does)

A. C.
public void click() { public void clickIt() {
this.changeXPosition(100.0); this.changeXPosition(100.0);
} }
B. o s D. . |
public void click(double xPosition) { public double click() {
this.changeXPosition(xPosition); return this.changeXPosition(100.0);
} }

39

Andries van Dam © 2016 9/22/16

Next Lecture

® Interface and polymorphism

40

