
Lecture 04:Interfaces in Java
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE201: Advanced Programming

Last Lecture
● Class relationships

o When writing a program, need to keep in mind “big picture”—
how are different classes related to each other?

o Association
§ Class A and class B are associated if A “knows about” B,

but B is not a component of A
§ Class A holds a class level reference to class B

o Composition
§ Class A contains object of class B
§ A instantiate B
§ The death relationship

• B is garbage collected when A gets garbage collected
o Dependency

§ Neither class A or class B “knows about” each other, nor
one of them is a “component” of the other. However, if A
requests a service from B then A is said to be dependent on
B

class Cart {
 private double price;
 public void addProduct(Product P){
 price+=P.getPrice();
 }
}

This Lecture

● Interfaces in Java
o Declaring
o Defining

● Quiz-1

Slide acknowledgements: CS15, Brown University

2

Recall: Declaring vs. Defining Methods
● What’s the difference

between declaring and
defining a method?
o method declaration is the

scope (public), return type
(void), name and parameters
(makeSounds())

o method definition is the body
of the method – the actual
implementation (the code that
actually makes the sounds)

public class Dog {
 //constructor elided

 public void makeSounds() {
 this.bark();
 this.whine();
 this.bark();
 }
 public void bark() {
 //code elided
 }
 public void whine() {
 //code elided
 }
}

Andries van Dam © 2016 9/22/16

3

Using What You Know
● Imagine this program:

o Sophia and Dan are racing from their home to city center
§ whoever gets there first, wins!
§ catch: they don’t get to choose their method of transportation

● Design a program that
o assigns mode of transportation to each racer
o starts the race

● For now, assume transportation options are Car and Bike

4
Andries van Dam © 2016 9/22/16

What does our design look like?

App

Race

CarRacer BikeRacer

Car Bike

Andries van Dam © 2016 9/22/16

5

● Imagine this program:
o Sophia and Dan are racing from

their home to city center
§ whoever gets there first, wins!
§ catch: they don’t get to choose

their method of transportation

● Design a program that
o assigns mode of transportation to

each racer
o starts the race

● For now, assume transportation
options are Car and Bike

Goal 1: Assign transportation to each racer
● Need transportation classes (something to give to racers)
● Let’s use Car and Bike classes
● Both classes will need to describe how the transportation

moves
o Car needs drive method
o Bike needs pedal method

Andries van Dam © 2016 9/22/16

6

Coding the project (1/4)
● Let’s build transportation classes

public class Bike {

 public Bike() {//constructor
 //code elided
 }
 public void pedal(){
 //code elided
 }
 //more methods elided
}

public class Car {

 public Car() {//constructor
 //code elided
 }
 public void drive(){
 //code elided
 }
 //more methods elided
}

Andries van Dam © 2016 9/22/16

7

Goal 1: Assign transportation to each racer
● Need racer classes that will use their type of transportation

o CarRacer
o BikeRacer

● What methods will we need? What capabilities should
each -Racer class have?

● CarRacer needs to know when to use the car
o write useCar() method

● BikeRacer needs to know when to use the bike
o write useBike() method

Andries van Dam © 2016 9/22/16

8

Coding the project (2/4)
● Let’s build the racer classes

public class CarRacer {
 private Car _car;

 public CarRacer() {
 _car = new Car();
 }

 public void useCar(){
 _car.drive();
 }
 //more methods elided
}

public class BikeRacer {
 private Bike _bike;

 public BikeRacer() {
 _bike = new Bike();
 }

 public void useBike(){
 _bike.pedal();
 }
 //more methods elided
}

Andries van Dam © 2016 9/22/16

9

Goal 2: Tell the racers to start the race
● Race class contains Racers

o App contains Race

● Race class will have
startRace() method
o startRace() tells each racer

to use their transportation
● startRace() gets called in

App

startRace:
Tell _dan to useCar
Tell _sophia to useBike

Andries van Dam © 2016 9/22/16

10

Coding the project (3/4)
● Let’s build the Race class

public class Race {
private CarRacer _dan;
private BikeRacer _sophia;

public Race() {
_dan = new CarRacer();
_sophia = new BikeRacer();

}

public void startRace() {
_dan.useCar();
_sophia.useBike();

}
}

Andries van Dam © 2016 9/22/16

11

Coding the project (4/4)

● Now build the App
class

● Now the race to the
city center!

public class App {
Race race;

 public App() {
race = new Race();
race.startRace();

}

public static void main (String[] args) {
new App();

}
}

Andries van Dam © 2016 9/22/16

12

Recap: What does our design look like?

App

Race

CarRacer BikeRacer

Car Bike

How would this program run?
• An instance of App gets initialized
• App’s constructor initializes an instance

of Race
• Race’s constructor initializes _dan

(CarRacer) and _sophia (BikeRacer)
o CarRacer’s constructor initializes a

_car (Car)
o BikeRacer’s constructor initializes

a _bike
• App calls race.startRace()
• race calls _dan.useCar() and

_sophia.useBike()
• _dan calls _car.drive()
• _sophia calls _bike.pedal()

Andries van Dam © 2016 9/22/16

13

Can we do better?

Andries van Dam © 2016 9/22/16

14

Things to think about
● Do we need two different Racer classes?

o Want multiple instances of Racers that use different modes of
transportation

o But how?

Andries van Dam © 2016 9/22/16

15

Solution 1: Create one Racer class with methods!

o Car’s drive() method will be invoked
● But any given instance of Racer

will need a new method to
accommodate every kind of
transportation!

public class Racer {
public Racer(){

//constructor
}

public void useCar(Car myCar){
myCar.drive();

}

public void useBike(Bike myBike){
myBike.pedal();

}
}

● Create one Racer class
o define different methods for each

type of transportation
● _dan is instance of Racer and

elsewhere we have:
Car dansCar = new Car();
_dan.useCar(dansCar);

Andries van Dam © 2016 9/22/16

16

Question: What is the relationship
between Racer+Car and
Racer+Bike?

Solution 1 Drawbacks
● Now imagine 10

people join the
race and so there
are 10 different
modes of
transportation

● Writing these
similar useType()
methods are a lot
of work for you, the
developer, and
inefficient coding
style

public class Racer {

 public Racer() {
 //constructor
 }
 public void useCar(Car myCar){//code elided}
 public void useBike(Bike myBike){//code elided}
 public void useHoverboard(Hoverboard myHb){//code elided}
 public void useHorse(Horse myHorse){//code elided}
 public void useScooter(Scooter myScooter){//code elided}
 public void useMotorcycle(Motorcycle myMc) {//code elided}
 public void usePogoStick(PogoStick myPogo){//code elided}
 // And more…
}

Andries van Dam © 2016 9/22/16

17

Is there another solution?

● Can we go from left to right?

Racer

useCar(Car car)
useBike(Bike bike)
useHoverBoard(HoverBoard hoverboard)
useHorse(Horse horse)
useScooter(Scooter scooter)
useMotorcycle(Motorcycle motorcycle)
usePogoStick(PogoStick pogo)

Racer

useTransportation()

Andries van Dam © 2016 9/22/16

18

Interfaces: Spot the Similarities
● What do cars and bikes have in common?
● What do cars and bikes not have in common?

Andries van Dam © 2016 9/22/16

19

● Drop kickstand
● Change gears

Cars vs. Bikes

Cars Bikes

● Play radio
● Turn off/on headlights
● Turn off/on turn signal
● Lock/unlock doors

● Move

Andries van Dam © 2016 9/22/16

2020

Digging deeper into the similarities

● How similar are they when they
move?
o do they move in same way?

● Not very similar
o cars drive
o bikes pedal

● Both can move, but in different
ways

Andries van Dam © 2016 9/22/16

21

Can we model this in code?
● Many real-world objects have

several broad similarities
o cars and bikes can move
o cars and laptops can play radio

● Take Car and Bike class
o how can their similar

functionalities get enumerated in
one place?

o how can their broad relationship
get portrayed through code?

Car
● playRadio()
● lockDoors()
● unlockDoors()
● drive()

Bike
● dropKickstand()
● changeGears()
● pedal()

Andries van Dam © 2016 9/22/16

22

Introducing Interfaces
● Interfaces group similar capabilities/function of different

classes together
● Model “acts-as” relationship
● Cars and Bikes could implement a Transporter interface

o they can transport people from one place to another
o “act as” transporters

§ objects that can move
§ have shared functionality, such as moving, braking, turning etc.

o for this lecture, interfaces are green and classes that
implement them pink

Andries van Dam © 2016 9/22/16

23

Introducing Interfaces
● Interfaces are contracts that classes agree to
● If classes choose to implement given interface, it must define all

methods declared in interface
o if classes don’t implement one of interface’s methods, the compiler raises

error
§ later we’ll discuss strong motivations for this contract enforcement

● Interfaces don’t define their methods - implementing classes do
o Interfaces only care about the fact that the methods get defined - not how

– implementation-agnostic
● Models similarities while ensuring consistency

o What does this mean?

Andries van Dam © 2016 9/22/16

24

Let’s break that down

2) Ensures Consistency

1) Models Similarities

Andries van Dam © 2016 9/22/16

25

Models Similarities While Ensuring Consistency

● How does this help our program?
● We know Cars and Bikes both need to move

o i.e., should all have some move()method
o let compiler know that too!

● Let’s make the Transporter interface!
o what methods should the Transporter interface declare?

§ move()
§ only using a move() for simplicity, but brake(), etc. would also be useful

o compiler doesn’t care how method is defined, just that it’s been defined
o general tip: methods that interface declares should model functionality all

implementing classes share

Andries van Dam © 2016 9/22/16

26

Declaring an Interface (1/4)

● That’s it!
● Interfaces, just like classes,

have their own .java file.
This file would be
Transporter.java

What does this look like?

public interface Transporter {

 public void move();

}

Andries van Dam © 2016 9/22/16

27

Declaring an Interface (2/4)

● Declare it as interface rather
than class

What does this look like?

public interface Transporter {

 public void move();

}

Andries van Dam © 2016 9/22/16

28

Declaring an Interface (3/4)
● Declare methods - the

contract
● In this case, only one

method required: move()
● All classes that sign contract

(implement this interface)
must define actual
implementation of any
declared methods

What does this look like?

public interface Transporter {

 public void move();

}

Andries van Dam © 2016 9/22/16

29

Declaring an Interface (4/4)
● Interfaces are only

contracts, not classes that
can be instantiated

● Interfaces can only declare
methods - not define them

● Notice: method declaration
end with semicolons, not
curly braces!

What does this look like?

public interface Transporter {

 public void move();

}

Andries van Dam © 2016 9/22/16

30

Questions
Which line(s) of this program is incorrect?
A. public interface Colorable {
 public Color getColor() {
 B. return Color.WHITE;
 }
}

C. public class Rectangle implements Colorable {
 //constructor elided
 public Color getColor() {
 D. return Color.PURPLE;
 }
}

Andries van Dam © 2016 9/22/16

31

Implementing an Interface (1/6)
● Let’s modify Car to implement

Transporter
o declare that Car “acts-as”

Transporter
● Add implements

Transporter to class
declaration

● Promises compiler that Car will
define all methods in
Transporter interface
o i.e., move()

● Will this code compile?

Let’s modify Car
public class Car implements Transporter {

 public Car() {
 // constructor
 }

 public void drive() {
 // code for driving the car
 }

}

Andries van Dam © 2016 9/22/16

32

Implementing an Interface (2/6)

● Will this code compile?
o nope :(

● Never implemented move() and
drive() - doesn’t suffice.
Compiler will complain accordingly

public class Car implements Transporter {

 public Car() {
 // constructor
 }

 public void drive() {
 // code for driving the car
 }

}

“Error: Car does not override
method move() in Transporter” *

*Note: the full error message is “Car is not abstract and does not override abstract
method move() in Transporter.” We’ll get more into the meaning of abstract in a later lecture.

Andries van Dam © 2016 9/22/16

33

Implementing an Interface (3/6)

● Next: honor contract by
defining a move() method

● Method signature (name
and number/type of
arguments) must match
how its declared in
interface

public class Car implements Transporter {

 public Car() {
 // constructor
 }

 public void drive() {
 //code for driving car
 }

 @Override
 public void move() {
 this.drive();
 }

}

Andries van Dam © 2016 9/22/16

34

Implementing an Interface (4/6)
● Include @Override right above the

method signature
● @Override is an annotation – a

signal to the compiler (and to
anyone reading your code)
o allows compiler to enforce that

interface actually has method
declared

o more explanation of @Override in
next lecture

● Annotations, like comments, have
no effect on how code behaves at
runtime

What does @Override mean?

public class Car implements Transporter {

 public Car() {
 // constructor
 }

 public void drive() {
 //code for driving car
 }

 @Override
 public void move() {
 this.drive();
 }

}

Andries van Dam © 2016 9/22/16

35

Implementing an Interface (5/6)

public class Car implements Transporter {
public Car() {

//code elided
}
public void drive(){

//code elided
}

 @Override
public void move(){

this.drive();
 this.brake();
 this.drive();

}
//more methods elided

}

public class Racer {

//previous code elided
public void useTransportation(

Transporter transport) {
transport.move(); //Polymorphism

}

}

Andries van Dam © 2016 9/22/16

36

● Defining interface method is like defining any other method
● Definition can be as complex or as simple as it needs to be
● Ex.: Let’s modify Car’s move method to include braking
● What will instance of Car do if move() gets called on it?

Implementing an Interface (6/6)
● As with signing multiple contracts,

classes can implement multiple
interfaces

o “I signed my rent agreement, so I'm a
renter, but I also signed my
employment contract, so I'm an
employee. I'm the same person.”

o what if I wanted Car to change color
as well?

o create a Colorable interface
o add that interface to Car’s class

declaration
● Implementing class must define every

single method in each of its interfaces

public interface Colorable {

 public void setColor(Color c);
 public Color getColor();

}

public class Car implements Transporter, Colorable{

 public Car(){ //body elided }
 public void drive(){ //body elided }
 public void move(){ //body elided }
 public void setColor(Color c){ //body elided }
 public Color getColor(){ //body elided }
}

Andries van Dam © 2016 9/22/16

37

Summary
● Interfaces are formal contracts and ensure

consistency
o compiler will check to ensure all methods

declared in interface are defined
● Can trust that any object from class that

implements Transporter can move()
● Will know how 2 classes are related if both

implement Transporter

Andries van Dam © 2016 9/22/16

38

Question
Given the following interface:

public interface Clickable {
public void click();

}

Which of the following would work as an implementation of the Clickable
interface? (don’t worry about what changeXPosition does)
A.

public void click() {
 this.changeXPosition(100.0);
}

public void click(double xPosition) {
 this.changeXPosition(xPosition);
}

B.

C.
public void clickIt() {
 this.changeXPosition(100.0);
}

public double click() {
 return this.changeXPosition(100.0);
}

D.

Andries van Dam © 2016 9/22/16

39

Next Lecture
● Interface and polymorphism

40

