
Lecture 05: Interfaces and
Polymorphism

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE201: Advanced Programming

Last Lecture

Do we need two
different Racer classes??

How about one Racer class with different methods?

Any
similarities?

Interfaces in Java
● Group similar capabilities/function of different

classes together
● Interfaces can only declare methods - not define

them
● Interfaces are contracts that classes agree to
● If classes choose to implement given interface, it

must define all methods declared in interface
o if classes don’t implement one of interface’s

methods, the compiler raises error

Declaring an Interface Implementing an Interface

@Override
@Override is an
annotation – a signal to
the compiler (and to
anyone reading your
code)

This Lecture

● Interfaces and Polymorphism

Slide acknowledgements: CS15, Brown University

Back to the Race
● Let’s make transportation classes use an interface

public class Bike implements Transporter{

 public Bike() {
 //code elided
 }
 public void pedal(){
 //code elided
 }
 @Override
 public void move() {
 this.pedal();
 }

 //more methods elided
}

public class Car implements Transporter{

 public Car() {
 //code elided
 }
 public void drive(){
 //code elided
 }
 @Override
 public void move() {
 this.drive();
 }
 //more methods elided
}

3
Andries van Dam © 2016 9/22/16

Leveraging Interfaces
● Given that there’s guarantee anything that implements

Transporter knows how to move, how can it be
leveraged to create single useTransportation()
method?

Racer

useTransportation()

Racer

useCar(Car car)
useBike(Bike bike)
useHoverBoard(HoverBoard hoverboard)
useHorse(Horse horse)
useScooter(Scooter scooter)
useMotorcycle(Motorcycle motorcycle)
usePogoStick(PogoStick pogo)

4
Andries van Dam © 2016 9/22/16

Introducing Polymorphism
● Poly = many, morph = forms
● A way of coding generically

o way of referencing many related objects as one generic type
§ cars and bikes can both move() → refer to them as Transporter

objects
§ phones and camera can both getCharged() → refer to them as

Chargeable objects, i.e., objects that implement Chargeable interface
§ cars and mobile phones can both playRadio() → refer to them as

RadioPlayer objects

● How do we write one generic useTransportation()
method?

5
Andries van Dam © 2016 9/22/16

What would this look like in code?

6

public class Racer {

//previous code elided
public void useTransportation(Transporter transportation) {

transportation.move();
}

}
This is polymorphism!
transportation object passed
in could be instance of Car,
Bike, etc., i.e., any class that
implements the interface

Andries van Dam © 2016 9/22/16

Let’s break this down.

1. Actual vs. Declared Type
2. Method resolution

public class Racer {

//previous code elided
public void useTransportation(Transporter transportation) {

transportation.move();
}

}

7
Andries van Dam © 2016 9/22/16

Actual vs. Declared Type (1/2)
● Consider following piece of code:

Transporter dansCar = new Car();

● ...is that legal?
o doesn’t Java do strict type checking? (type on LHS = type on RHS)
o how can instances of Car get stored in Transporter variable?

8
Andries van Dam © 2016 9/22/16

Actual vs. Declared Type (2/2)
● Can treat Car/Bike object as

Transporter objects
● Car is the actual type

o Java will look in this class for the
definition of the method

● Transporter is declared type
o Java will limit caller so it can only call

methods on instances that are
declared as Transporter objects

● If Car defines playRadio()
method. Is
transportation.playRadio()
correct?

Transporter transportation = new Car();
transportation.playRadio();

Nope. The playRadio() method
is not declared in Transporter
interface, therefore Java does not
recognize it as viable method call

9
Andries van Dam © 2016 9/22/16

Determining the Declared Type
● What methods do Car and Bike

have in common?
o move()

● How do we know that?
o they implement Transporter

§ guarantees that they have move()
method

● Think of Transporter like the
“lowest common denominator”
o it’s what all transportation classes

will have in common

Car implements Transporter
void move();
void playRadio();//etc.

Bike implements Transporter
void move();
void dropKickstand();//etc.

10
Andries van Dam © 2016 9/22/16

Is this legal?
Transporter sophiasBike = new Bike();

Radio wouldn’t implement Transporter. Since
Radio cannot “act as” a Transporter, you
cannot treat it as Transporter.

Transporter sophiasCar = new Car();

Transporter sophiasRadio = new Radio();

11
Andries van Dam © 2016 9/22/16

Motivations for Polymorphism
● Many different kinds of transportation but only care about

their shared capability
o i.e. how they move

● Polymorphism let programmers sacrifice specificity for
generality
o treat any number of classes as their lowest common denominator
o limited to methods declared in that denominator

§ can only use methods declared in Transporter

● For this program, that sacrifice is ok!
o Racer doesn’t care if instance of Car can playRadio() or if instance of Bike

can dropKickstand()
o only method Racer wants to call is move() 12

Andries van Dam © 2016 9/22/16

Polymorphism in Parameters
● What are implications of this method declaration?

public void useTransportation(Transporter transportation) {
 //code elided
}

● useTransportation will accept any object that implements Transporter

● useTransportation can only call methods declared in Transporter

13
Andries van Dam © 2016 9/22/16

Is this legal?
Transporter sophiasBike = new Bike();
_sophia.useTransportation(sophiasBike);

Car sophiasCar = new Car();
_sophia.useTransportation(sophiasCar);

Radio sophiasRadio = new Radio();
_sophia.useTransportation(sophiasRadio);

A Radio wouldn’t implement Transporter.
Therefore, useTransportation() cannot treat
it like a Transporter object.

Even though
sophiasCar is

declared as a Car,
the compiler can still

verify that it
implements

Transporter.

14
Andries van Dam © 2016 9/22/16

Why move()? (1/2)
● Why call move()?
● What move() method gets executed?

public class Racer {

//previous code elided
public void useTransportation(Transporter transportation) {

transportation.move();
}

}
15

Andries van Dam © 2016 9/22/16

Why move()? (2/2)
● Only have access to Transporter object

o cannot call transportation.drive()or
transportation.pedal()
§ that’s okay, because all that’s needed is move()

o limited to the methods declared in Transporter

16
Andries van Dam © 2016 9/22/16

Method Resolution: Which move() is executed?

● Consider this line of code in Race class:

_sophia.useTransportation(new Bike());

● Remember what useTransportation method looked like

public void useTransportation(Transporter transportation) {
 transportation.move();
}

What is “actual type” of transportation in this method invocation?

17
Andries van Dam © 2016 9/22/16

Method Resolution (1/4)
● Bike is actual type

o Racer was handed instance of
Bike
§ new Bike() is argument

● Transporter is declared type
o Racer treats Bike object as

Transporter object

● So… what happens in
transportation.move()?
o What move() method gets

used?

public class Racer {
 //previous code elided

 public void useTransportation(Transporter
 transportation) {
 transportation.move();
 }

}

public class Race {

private Racer_sophia;
//previous code elided

public void startRace() {
_sophia.useTransportation(new Bike());

}
}

18
Andries van Dam © 2016 9/22/16

Method Resolution (2/4)
● _Sophia is a Racer
● Bike’s move() method

gets used
● Why?

o Bike is actual type
§ Java will execute methods

defined in Bike class
o Transporter is declared

type
§ Java limits methods that

can be called to those
declared in Transporter
interface

public class Bike implements Transporter {
 //previous code elided
 public void move() {
 this.pedal();
 }
}

public class Race {
 //previous code elided

public void startRace() {
_sophia.useTransportation(new Bike());

}
}
public class Racer {
 //previous code elided
 public void useTransportation(Transporter
 transportation) {
 transportation.move();
 }
}

19
Andries van Dam © 2016 9/22/16

Method Resolution (3/4)
● What if _sophia received instance of Car?

o What move() method would get called then?
§ Car’s!

public class Race {

 //previous code elided

public void startRace() {
_sophia.useTransportation(new Car());

}
}

20
Andries van Dam © 2016 9/22/16

Method Resolution (4/4)
● This method resolution is example of dynamic binding,

which is when actual method implementation used is not
determined until runtime
o contrast with static binding, in which method gets resolved at

compile time

● move()method is bound dynamically – Java does not
know which move() method to use until program runs
o same “transport.move()” line of code could be executed

indefinite number of times with different method resolution each
time

21
Andries van Dam © 2016 9/22/16

Clicker Question
Given the following class:
public class Laptop implements Typeable, Clickable {

public void type() {
// code elided

}
public void click() {

//code elided
}

Given that typeable has declared the type method and clickable has declared
the click method, which of the following calls is/are valid?
A. Typeable macBook= new Typeable();

macBook.type();

Clickable macBook = new Clickable();
macBook.type();

B.

C. Typable macBook= new Laptop();
macBook.click();

Clickable macBook = new Laptop();
macBook.click();

D.

22
Andries van Dam © 2016 9/22/16

Why does that work? (1/2)
● Declared type and actual type work together

o declared type keeps things generic
§ can reference a lot of objects using one generic type

o actual type ensures specificity
§ when defining implementing class, the methods can get implemented

in any way
Car

Declared

Actual
This is my

Transporter object!

23
Andries van Dam © 2016 9/22/16

Why does that work? (2/2)
● Declared type and actual type work together

o declared type keeps things generic
§ can reference a lot of objects using one generic type

o actual type ensures specificity
§ when defining implementing class, the methods can get implemented

in any way
Bike

Declared

Actual
This is my

Transporter object!

24
Andries van Dam © 2016 9/22/16

When to use polymorphism?
● Using only functionality declared in interface or specialized

functionality from implementing class?
o if only using functionality from the interface à polymorphism!
o if need specialized methods from implementing class, don’t use

polymorphism

25
Andries van Dam © 2016 9/22/16

Why use interfaces?
● Contractual enforcement

o will guarantee that class has certain capabilities
§ Car implements Transporter, therefore it must know how to move()

● Polymorphism
o Can have implementation-agnostic classes and methods

§ know that these capability exists, don’t care how they’re implemented
§ allows for more generic programming

• useTransportation can take in any Transporter object
• can easily extend this program to use any form of transportation, with

minimal changes to existing code
§ an extremely powerful tool for extensible programming

26
Andries van Dam © 2016 9/22/16

Why is this important?
● With 2 modes of transportation!
● Old Design:

o need more classes à more specialized methods
(useRollerblades(), useBike(), etc)

● New Design:
o as long as the new classes implement Transporter, Racer

doesn’t care what transportation it has been given
o don’t need to change Racer!

§ less work for you!
§ just add more transportation classes that implement Transporter

27
Andries van Dam © 2016 9/22/16

The Program

public class Race {
 private Racer _dan, _sophia;

 public Race(){
 _dan = new Racer();
 _sophia = new Racer();
 }
 public void startRace() {
 _dan.useTransportation(new Car());
 _sophia.useTransportation(new Bike());
 }
}

public class App {
 public App() {
 Race r = new Race();
 r.startRace();
 }
}

public class Racer {
 public Racer() {}

 public void useTransportation(Transporter transport){
 transport.move();
 }
}

public class Car implements Transporter {
 public Car() {}
 public void drive() {
 //code elided
 }
 public void move() {
 this.drive();
 }
}

public class Bike implements Transporter {
 public Bike() {}
 public void pedal() {
 //code elided
 }
 public void move() {
 this.pedal();
 }
}

public interface Transporter {
 public void move();
} 28

Andries van Dam © 2016 9/22/16

In Summary
● Interfaces are contracts

o force classes to define certain methods

● Polymorphism allows for extremely generic code
o treats multiple classes as their “generic type” while still allowing

specific method implementations to be executed

● Polymorphism + Interfaces
o generic coding

● Why is it helpful?
o want you to be the laziest (but cleanest) programmer you can be

29
Andries van Dam © 2016 9/22/16

Next Lecture
● Inheritance and polymorphism

30

