
Andries van Dam © 2016 9/27/16

Lecture 06: Inheritance and
Polymorphism

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE201: Advanced Programming

Andries van Dam © 2016 9/27/16

Last Lecture
● Polymorphism in Java

o A way of coding generically
§ way of referencing many related objects as one

generic type

1

public class Racer {
 public Racer() {}

 public void useTransportation(Transporter transport){
 transport.move();
 }
}

public class Race {
 private Racer _dan, _sophia;

 public Race(){
 _dan = new Racer();
 _sophia = new Racer();
 }
 public void startRace() {
 _dan.useTransportation(new Car());
 _sophia.useTransportation(new Bike());
 }
}

public class Car implements Transporter {
 public void move() { this.drive(); }

}

public class Bike implements Transporter {
 public void move() { this.pedal(); }

}

public interface Transporter {
 public void move();
}

Andries van Dam © 2016 9/27/16

This Lecture

● Inheritance and Polymorphism

Slide acknowledgements: CS15, Brown University

2

Andries van Dam © 2016 9/27/16

Spot the Similarities

● What are the similarities between a convertible and a sedan?
● What are the differences?

3

Andries van Dam © 2016 9/27/16

● Fixed Roof

Convertibles vs. Sedans

Convertible Sedan

● Top Down Roof
(Retractable Roof)

● Drive
● Brake
● Play radio
● Lock/unlock

doors
● Turn off/on

turn engine

4

Andries van Dam © 2016 9/27/16

● In some cases, objects can be very closely
related to each other
o Convertibles and sedans drive the same way
o Flip phones and smartphones call the same

way
● Imagine we have an Convertible and a

Sedan class
o Can we enumerate their similarities in one

place?
o How do we portray their relationship through

code?

Can we model this in code?
Convertible

● putTopDown()
● turnOnEngine()
● turnOffEngine()
● drive()

Sedan
● parkInCompactSpace()
● turnOnEngine()
● turnOffEngine()
● drive()

5

Andries van Dam © 2016 9/27/16

● We could build an interface to model their similarities
o Build a Car interface with the following methods:

§ turnOnEngine()
§ turnOffEngine()
§ drive()
§ etc.

● Remember: interfaces only declare methods
o Each class will need to implement the method in its own way
o Thinking ahead: a lot of these method implementations would be the

same across classes
§ Convertible and Sedan would have the same definition for drive()

• startEngine, shiftToDrive, etc
● Is there a better way where we can reuse the code?

Can we use Interfaces?

6

Andries van Dam © 2016 9/27/16

● In OOP, inheritance is a way of modeling very
similar classes

● Inheritance models an “is-a” relationship
o A sedan “is a” car
o A dog “is a” mammal

● Remember: Interfaces model an “acts-as”
relationship

● You’ve probably seen inheritance before!
o Taxonomy from biology class

Inheritance

…

Animalia

Mammalia

Canis

Chordata

7

Andries van Dam © 2016 9/27/16

● This is an inheritance diagram
o Each box represents a class

● A Poodle “is-a” Dog, a Dog “is-a” Mammal
o Transitively, a Poodle is a Mammal

● “Inherits from” = “is-a”
o Poodle inherits from Dog
o Dog inherits from Mammal

● This relationship is not bidirectional
o A Poodle is a Dog, but not every Dog is a

Poodle (could be a Labrador, a German
Shepard, etc)

Modeling Inheritance (1/2)

Mammal

Dog

Poodle Labrador

8

Andries van Dam © 2016 9/27/16

● Superclass/parent/base: A class that is
inherited from

● Subclass/child/derived: A class that
inherits from another

● “A Poodle is a Dog”
o Poodle is the subclass
o Dog is the superclass

● A class can be both a superclass and a
subclass
o Ex. Dog

● In Java you can only inherit from one
superclass (no multiple inheritance)
o Other languages, like C++, allow for multiple

inheritance, but too easy to mess up

Modeling Inheritance (2/2)

Mammal

Dog

Poodle Labrador

9

Andries van Dam © 2016 9/27/16

● A subclass inherits all of its parent’s public and protected capabilities
o If Car defines drive(), Convertible inherits drive() from Car and drives the same

way. This holds true for all of Convertible’s subclasses as well
● Inheritance and Interfaces both legislate class’s behavior, although in very

different ways
o Interfaces allow the compiler to enforce method implementation

§ An implementing class will have all capabilities outlined in an interface
o Inheritance assures the compiler that all subclasses of a superclass will have the

superclass’s public capabilities without having to respecify code – methods are inherited
§ A Convertible knows how to drive and drives the same way as Car because of inherited code

● Benefit of inheritance
o Code reuse

§ If drive() is defined in Car, Convertible doesn’t need to redefine it! Code is inherited
§ Only need to implement what is different, i.e. what makes Convertible special

Motivations for Inheritance

10

Andries van Dam © 2016 9/27/16

● A superclass factors out commonalities among its subclasses
o describes everything that all subclasses have in common
o Dog defines things common to all Dogs

● A subclass differentiates/specializes its superclass by:
o adding new methods:

§ the subclass should define specialized methods. All Animals cannot swim, but
Fish can

o overriding inherited methods: (more on this after few slides!)
§ a Bear class might override its inherited sleep method so that it hibernates rather

than sleeping as most other Animals do
o defining “abstract” methods: (next lecture!)

§ the superclass declares but does not define

Superclasses vs Subclasses

11

Andries van Dam © 2016 9/27/16

Let’s examine inheritance further

1.Model inheritance relationship
2.Adding new methods
3.Overriding methods

12

Andries van Dam © 2016 9/27/16

● Let’s model a Van, a Sedan, and a Convertible class
with inheritance!

Modeling Inheritance

superclassCar

Van Sedan Convertible

subclasses
13

Andries van Dam © 2016 9/27/16

● Defining Car is just like
defining any other class

Step 1: Define the superclass
public class Car {
 private Engine _engine;
 //other variables elided
 public Car(){
 _engine = new Engine();
 }
 public void turnOnEngine() {
 _engine.start();
 }
 public void turnOffEngine() {
 _engine.shutOff();
 }
 public void cleanEngine() {
 _engine.steamClean();
 }
 public void drive() {
 //code elided
 }
 //more methods elided
}

Andries van Dam © 2016 9/27/16

● Notice the extends keyword
o extends means “is a subclass

of” or “inheriting from”
o extends lets the compiler

know that Convertible is
inheriting from Car

o Whenever you create a class
that inherits from a superclass,
must include “extends
<superclass name>” in class
declaration

Step 2: Define a subclass

public class Convertible extends Car {
 //code elided for now
}

15

Andries van Dam © 2016 9/27/16

● You can create any number of subclasses
o Sedan, Van, Convertible, SUV...could all extend from Car
o These classes will inherit public capabilities from Car

● Each subclass can only inherit from one superclass
o Convertible cannot extend Car, FourWheeledTransportation,

and GasFueledTransportation
o Contrast with interfaces: you can implement as many interfaces as

you want

Model Inheritance

16

Andries van Dam © 2016 9/27/16

Let’s examine inheritance further

1.Model inheritance relationship
2.Adding new methods
3.Overriding methods

17

Andries van Dam © 2016 9/27/16

● Let’s make a Sedan class
that inherits from Car

● Let’s make Convertible
class that inherits from Car

● Can Sedan use
putTopDown()?
o Nope. That method is

defined in Convertible, so
only Convertible and
Convertible’s subclasses
can use it

Adding new methods (1/2)
public class Sedan extends Car {

public Sedan (){

}
//other methods elided

}
public class Convertible extends Car {

public Convertible(){

}

public void putTopDown(){
//code elided

}
} 18

Andries van Dam © 2016 9/27/16

● You can add specialized functionality to a subclass by
defining methods

● These methods can only be inherited if a class extends this
subclass

Adding new methods (2/2)

Doesn’t inherit
Convertible’s methods

Doesn’t inherit
Convertible’s methods

Inherits Convertible’s
methods

Car

Convertible Sedan

Porsche
19

Andries van Dam © 2016 9/27/16

Car
private Engine _engine

public void turnOnEngine()
public void turnOffEngine()

public void drive()

● Remember: a subclass inherits any
public or protected methods and
variables from its superclass. Subclass
cannot access any private field/method
from superclass

● Before adding any code to
Convertible class, what does
Convertible already know how to do?
o It can do anything a Car can do!

§ turnOnEngine()
§ turnOffEngine()
§ drive()

What can subclasses access? (1/2)

Convertible

Note that we don’t list the parent’s
public methods again here – they
are implicitly inherited! 20

Andries van Dam © 2016 9/27/16

What can subclasses access? (2/2)
public class Convertible extends Car {
 //constructor elided
 public void cleanCar() {
 _engine.steamClean();
 }
}

public class Convertible extends Car
{
 //constructor elided
 public void cleanCar() {
 this.cleanEngine();
 }
}

This makes
use of the
parent’s
inherited

cleanEngine
method,

hence our use
of this

21

public class Car {
 private Engine _engine;
 //other variables elided
 public Car(){
 _engine = new Engine();
 }
 public void turnOnEngine() {
 _engine.start();
 }
 public void turnOffEngine() {
 _engine.shutOff();
 }
 public void drive() {
 //code elided
 }
 protected void cleanEngine() { ... }
}

● Will Convertible have access to _engine?
● Subclasses cannot directly inherit private variables / methods from parent

o But you can can use methods defined in your parent, which have access to the variable

Andries van Dam © 2016 9/27/16

Which of the following is a superclass/parent of the rest?

A. Lions
B. Tigers
C. Cats
D. Leopards

Question

22

Andries van Dam © 2016 9/27/16

All of the following are appropriate ways to model superclasses and
subclasses EXCEPT:

A. C.

B.

Question

23

Andries van Dam © 2016 9/27/16

Let’s examine inheritance further

1.Model inheritance relationship
2.Adding new methods
3.Overriding methods

24

Andries van Dam © 2016 9/27/16

● A Convertible may decide
Car’s drive() method just
doesn’t cut it
o A Convertible drives much

faster than a regular car

● Can override a parent
class’s method and redefine
it

Overriding methods (1/3)
public class Car {

 private Engine _engine;
 //other variables elided

 public Car() {
 _engine = new Engine();
 }
 public void drive() {
 this.goFortyMPH();
 }
 public void goFortyMPH() {
 //code elided
 }
 //more methods elided
}

25

Andries van Dam © 2016 9/27/16

● @Override is an annotation--
signals to compiler (and to
anyone reading your code) that
you’re overriding a method of the
superclass
o We include @Override right before

we declare method we mean to
override

Overriding methods (2/3)
public class Convertible extends Car {

 public Convertible() {

 }

 @Override
 public void drive(){
 this.goSixtyMPH();
 }

 public void goSixtyMPH(){
 //code elided
 }
}

26

Andries van Dam © 2016 9/27/16

● Here’s where we re-declare
method we want to override
o Be careful – method signature must

match that of the superclass’s method
exactly else Java will create a new
additional method instead of overriding
!

● drive() is the method signature,
indicating that name of method is
drive and it takes in no parameters
o When a Convertible is told to drive, it

will execute this code instead of the
code in its superclass’s drive method

Overriding methods (3/3)
public class Convertible extends Car {

 public Convertible() {

 }

 @Override
 public void drive(){
 this.goSixtyMPH();
 }

 public void goSixtyMPH(){
 //code elided
 }
}

27

Andries van Dam © 2016 9/27/16

● Keyword super used to invoke
original inherited method from parent:
in this case, drive as implemented in
parent Car

● While you can use super to call other
methods in the parent class, it’s
strongly discouraged
o Use the this keyword instead
o Except when you are calling the

parent’s method within the child’s
method of the same name
§ This is partial overriding
§ What would happen if we said

this.drive() instead of
super.drive()?

Partially overriding methods
public class Sedan extends Car {

 public Sedan () {
 //code elided
 }

 @Override
 public void drive(){
 this.turnOnEngine();
 super.drive(); // super == parent

 class
 this.addPinToMap();
 super.drive();
 super.drive();
 this.addPinToMap();
 }

} 28

Andries van Dam © 2016 9/27/16

● When we call drive() on some
instance of Porsche, how does
Java know which version of the
method to call?

● Essentially, Java “walks up the
class inheritance tree” from
subclass to superclass until it either:
o finds the method, and calls it
o doesn’t find the method, and

generates a compile-time error. You
can’t send a message for which there
is no method!

Method Resolution (1/2)
Car

drive()

Convertible
drive()

topDown()

Porsche
drive()

29

Andries van Dam © 2016 9/27/16

● When we call drive() on a
Porsche, Java executes the
drive() method defined in
Porsche

● When we call topDown() on a
Porsche, Java executes the
topDown() method defined in
Convertible

Method Resolution (2/2)
Car

drive()

Convertible
drive()

topDown()

Porsche
drive()

30

Andries van Dam © 2016 9/27/16

● Let’s borrow the Racer
class from the example we
discussed in lecture on
interfaces

● However, we change the
parameter type in method
useTransportation()
from Transporter to Car

● What would happen?
o We can only pass in Car

and subclasses of Car

Inheritance and Polymorphism (1/3)
public class Racer {

 //previous code elided

 public void useTransportation(Car myCar) {
 //code elided
 }

}

31

Andries van Dam © 2016 9/27/16

● Let’s define
useTransportation()

● What method should
we call on myCar?
o Every Car knows how to

drive, which means we
can guarantee that every
subclass of Car also
knows how to drive

Inheritance and Polymorphism (2/3)
public class Racer {

 //previous code elided

 public void useTransportation(Car myCar) {
 myCar.drive();
 }

}

32

Andries van Dam © 2016 9/27/16

Is this legal?
Car convertible = new Convertible();
_sophia.useTransportation(convertible);

Car sedan = new Sedan();
_sophia.useTransportation(sedan);

Car bike = new Bike();
_sophia.useTransportation(bike);

Bike is not a subclass of Car, so you cannot
treat an instance of Bike as a Car.

33

Andries van Dam © 2016 9/27/16

● That’s all we needed to do!
● Our inheritance structure looks really similar to our interfaces structure

o Therefore, we only need to change 2 lines in Racer in order to use any of
our new cars!

o But remember: what’s happening behind the curtain is very different:
method resolution “climbs up the hierarchy” for inheritance

● Polymorphism is an incredibly powerful tool
o Allows for generic programming
o Treat multiple classes as their generic type while still allowing specific

method implementations to be executed

● Polymorphism+Inheritance is strong generic coding

Inheritance and Polymorphism (3/3)

34

Andries van Dam © 2016 9/27/16

In the following code, the Elephant subclass extends the Animal superclass,
both of which contain and define an eat() method:

Animal horton = new Elephant();
horton.eat();

Whose eat method is being called?

A. Animal
B. Elephant
C. Sedan
D. None of the above

Question

35

Andries van Dam © 2016 9/27/16

• Assignments
• Please use common sense and feel free to have variations in your design as

long as:
• It adheres to the OOP concepts taught in lecture slides
• It adheres to the instructor’s expectations provided in the assignment

description
• Not possible to describe every possible permutation/combination of

scenarios
• Rubrics

• As you might have noticed we are not marking how exactly you have
implemented any particular method

• We are providing marks just for concepts/topics discussed in lecture
• E.g., for assignment-1, identifying actors and methods, encapsulation,

immutable variables, class relationships, etc.
• Final type variables: not using them is a faulty design, irrespective of whether

you are setting it via constructor only, or if you did not provide setter, etc.
• Recent disruptions (lectures, tutorials)

• We apologize for recent disruptions in time table schedule due to extra
lectures, moving tutorial groups, merging tutorial groups, etc.

• This will be streamlined from next week and time table will be updated
• Two extra lectures were required as no lectures next week

Brief Discussion

Andries van Dam © 2016 9/27/16

● Inheritance and polymorphism (continued)
● Immutable classes
● Abstract classes

Next Lecture

37

