CSE201: Advanced Programming

Lecture 06: Inheritance and
Polymorphism

Vivek Kumar
Computer Science and Engineering
I1IT Delhi
vivekk@iiitd.ac.in

Last Lecture

® Polymorphism in Java

o Away of coding generically

= way of referencing many related objects as one

public class Racer { i
public Racer() {} generic type

public void useTransportation(Transporter transport){

transport.move(); public interface Transporter {
} public void move();

} }

public class Race {

private Racer _dan, _sophia; public class Car implements Transporter {

public Race(){ public void move() { this.drive(); }

_dan = new Racer(); }
_sophia = new Racer();

}

public void startRace().{ public class Bike implements Transporter {
_dan.useTransportation()s public void move() { this.pedal(); }
_sophia.useTransportation()5

} Andries van Dam © 2016 9/27/16

This Lecture

® Inheritance and Polymorphism

Slide acknowledgements: CS15, Brown University

Spot the Similarities

® \Vhat are the similarities between a convertible and a sedan?
® \Vhat are the differences?

Convertibles vs. Sedans

Convertible Sedan

e Top Down Roof e Drive e Fixed Roof
(Retractable Roof) e Brake
e Play radio
e Lock/unlock
doors

Turn off/on
turn engine

Andries van Dam © 2016 9/27/16

Can we model this in code?

® |n some cases, objects can be very closely Convertible
related to each other e putTopDown ()
o Convertibles and sedans drive the same way e turnOnEngine()
o Flip phones and smartphones call the same e turnOffEngine()
way e drive()
® Imagine we have an Convertible and a
Sedan class Sedan
o Can we enumerate their similarities in one e parkInCompactSpace()
place? e turnOnEngine()
o How do we portray their relationship through e turnOffEngine()
code? e drive()

Andries van Dam © 2016 9/27/16

Can we use Interfaces?

® \Ve could build an interface to model their similarities

o Build a Car interface with the following methods:
» turnOnEngine()
" turnOffEngine()
= drive()
= etc.

® Remember: interfaces only declare methods

o Each class will need to implement the method in its own way
o Thinking ahead: a lot of these method implementations would be the
same across classes

= Convertible and Sedan would have the same definition for drive()
startEngine, shiftToDrive, etfc

® Is there a better way where we can reuse the code?

Andries van Dam © 2016 9/27/16

Inheritance

DD

® In OOQOP, inheritance is a way of modeling very
similar classes
® Inheritance models an “is-a” relationship

o Asedan “isa” car
o Adog “is a” mammal

® Remember: Interfaces model an “acts-as”
relationship

® You've probably seen inheritance before!
o Taxonomy from biology class

Kingdom Animalia

Phylum Chordata

Class Mammalia

Order

0
0
0
0

)

0
0

Family

Genus

\
0

L

0

Species

Andries van Dam © 2016 9/27/16

Modeling Inheritance (1/2)

® This is an inheritance diagram
o Each box represents a class
Mammal ® APoodle “is-a” Dog, a Dog “is-a” Mammal
% o Transitively, a Poodle is a Mammal
® ‘Inherits from” = “is-a”
Dog o Poodle inherits from Dog
T T o Dog inherits from Mammal

® This relationship is not bidirectional

o APoodle is a Dog, but not every Dog is a

Poodle Labrador Poodle (could be a Labrador, a German

Shepard, etc)

Andries van Dam © 2016 9/27/16

Modeling Inherita

Mammal

1

Dog

T

T

Poodle

Labrador

nce (2/2)

Superclass/parent/base: A class that is
inherited from

Subclass/child/derived: A class that
inherits from another

“APoodle is a Dog”
o Poodle is the subclass
o Dog is the superclass

A class can be both a superclass and a
subclass

o Ex.Dog

In Java you can only inherit from one
superclass (no multiple inheritance)

o Other languages, like C++, allow for multiple
inheritance, but too easy to mess up

Andries van Dam © 2016 9/27/16

Motivations for Inheritance

e A inherits all of its parent’s public and protected capabilities
o If Car defines drive(), inherits drive() from Car and drives the same
way. This holds true for all of 'S subclasses as well

® Inheritance and Interfaces both legislate class’s behavior, although in very
different ways
o Interfaces allow the compiler to enforce method implementation
. An implementing class will have all capabilities outlined in an interface
o Inheritance assures the compiler that all of a superclass will have the
superclass’s public capabilities without having to respecify code — methods are inherited
. A knows how to drive and drives the same way as Car because of inherited code
® Benefit of inheritance

o Code reuse

. If drive() is defined in Car, doesn’t need to redefine it! Code is inherited
. Only need to implement what is different, i.e. what makes special

10

Andries van Dam © 2016 9/27/16

Superclasses vs Subclasses

® A superclass factors out commonalities among its subclasses

o describes everything that all subclasses have in common
o Dog defines things common to all Dogs

® A subclass differentiates/specializes its superclass by:

o adding new methods:

» the subclass should define specialized methods. All Animals cannot swim, but
Fish can

o overriding inherited methods: (more on this after few slides!)

= a Bear class might override its inherited sleep method so that it hibernates rather
than sleeping as most other Animals do

o defining “abstract” methods: (next lecture!)
= the superclass declares but does not define

Andries van Dam © 2016 9/27/16

11

Let’s examine inheritance further

1.Model inheritance relationship
2.Adding new methods
3. Overriding methods

12

Modeling Inheritance

® Let's model a . a ,and a
with inheritance!
Car
_ 4

class

< superclass

[

13

Step 1: Define the superclass

public class Car {
private Engine _engine;

o Deﬁning Car iS jUSt I|ke //other variables elided
defining any other class public Car(){

_engine = new Engine();
}

public void turnOnEngine() {
_engine.start();

}

public void turnOffEngine() {
_engine.shutOff();

}

public void cleanEngine() {
_engine.steamClean();

}

public void drive() {
//code elided

}

//more methods elided

Andries van Dam © 2016 9/27/16 }

Step 2: Define a subclass

® Notice the extends keyword

o extends means “is a subclass
of” or “inheriting from”

o extends lets the compiler
know that Convertible is }
inheriting from Car

o Whenever you create a class
that inherits from a superclass,
must include “extends
<superclass name>"in class

declaration

public class extends Car {
//code elided for now

15

Andries van Dam © 2016 9/27/16

Model Inheritance

® You can create any number of subclasses

® : : : ...could all extend from Car
o These classes will inherit public capabilities from Car

® Each subclass can only inherit from one superclass

O cannot extend Car, FourWheeledTransportation,
and GasFueledTransportation

o Contrast with interfaces: you can implement as many interfaces as
you want

16

Andries van Dam © 2016 9/27/16

Let’s examine inheritance further

1.Model inheritance relationship
2.Adding new methods

3. Overriding methods

17

Adding new methods (1/2)

® Let,S make 3 CIaSS public class extends Car {
that inherits from Car public O{
® Let's make Convertible }
class that inherits from Car //other methods elided
® Can use }
pUtTOpDO\Nn()? public class extends Car {
o Nope. That method is public 01
defined in . SO
only and }
. S subclasses public void putTopDown(){
can use it //code elided

}
} 18

Andries van Dam © 2016 9/27/16

Adding new methods (2/2)

® You can add specialized functionality to a subclass by
defining methods

® These methods can only be inherited if a class extends this
subclass

< Doesn’t inherit
Convertible’s methods

Car

T T

Doesn’t inherit
Convertible’s methods

I

Porsche

¢ Inherits Convertible’s
methods

19

Andries van Dam © 2016 9/27/16

What can subclasses access? (1/2)

® Remember: a subclass inherits any

public or protected methods and Car
private Engine _engine

variables from its supgrclassf. Subclass blic void TurmOmEnEine()
cannot access any private field/method| public void turnoffengine()

public void drive()
from superclass

® Before adding any code to %

class, what does

already know how to do?
o It can do anything a Car can do!

= turnOnEngine()
. Note that we don't list the parent’s
- tur'nOﬁCEnglne() public methods again here — they

* drive() are implicitly inherited! 20

Andries van Dam © 2016 9/27/16

What can subclasses access? (2/2)

}

public class Car {

private Engine _engine;
//other variables elided
public Car(){
_engine = new Engine();
}
public void turnOnEngine() {
_engine.start();

}
public void turnOffEngine() {

_engine.shutOoff();

}
public void drive() {

//code elided
}

protected void cleanEngine() { ... }

public class
//constructor elided

public void cleanCar() {
_engine.steamClean();
}

extends Car {

}
public class extends Car
{

//constructor elided

public void cleanCar() {

ks . cleanEngine();

}

b

e Will

have access to _engine?

This makes
use of the
parent’s
inherited
cleanEngine
method,
hence our use
of this

® Subclasses cannot directly inherit private variables / methods from parent
But you can can use methods defined in your parent, which have access to the variable

©)

Andries van Dam © 2016 9/27/16

21

Question

Which of the following is a superclass/parent of the rest?

A. Lions

B. Tigers
C. Cats

D. Leopards

22

Question

All of the following are appropriate ways to model superclasses and

subclasses EXCEPT:

Animal

Ji

Dog

Horse

Animal
A / i \ C
Cat Horse
Cat
Dog
Pet Dog
‘W\ Beagle
Poodle

Beagle Labrador

Andries van Dam © 2016 9/27/16

Labrador

Poode

23

Let’s examine inheritance further

1.Model inheritance relationship
2.Adding new methods
3. Overriding methods

24

Overriding methods (1/3)

o A

may decide
Car’s drive() method just

doesn’t cut it

O

A drives much

faster than a regular car

® Can override a parent

class’s method and redefine

it

Andries van Dam © 2016 9/27/16

public class Car {

private Engine _engine;
//other variables elided

public Car() {
_engine

new Engine();

}

public void drive() {
this.goFortyMPH();

}

public void goFortyMPH() {
//code elided

}

//more methods elided

25

Overriding methods (2/3)

public class extends Car {

® (@Override Is an annotation--
signals to compiler (and to public O A
anyone reading your code) that

; . }
you're overriding a method of the
@Override
superclass public void drive(){
o We include @Override right before this.goSixtyMPH();
we declare method we mean to }

override
public void goSixtyMPH(){

//code elided
}

26

Andries van Dam © 2016 9/27/16

Overriding methods (3/3)

, ublic class extends Car
® Here’s where we re-declare P ¢
method we want to override public O {
o Be careful — method signature must }
match that of the superclass’s method
exactly else Java will create a new @Override
additional method instead of overriding public void drive(){

! this.goSixtyMPH();
}
® drive() is the method signature,
public void goSixtyMPH(){

indicating that name of method is / code elided
drive and it takes in no parameters }

o When a Convertible is told to drive, it }
will execute this code instead of the

code in its superclass’s drive method o7

Andries van Dam © 2016 9/27/16

Partially overriding methods

® Keyword super used to invoke

7 _ _ public class extends Car {
original inherited method from parent:
in this case, drive as implemented in public () {
parent Car //code elided
}
® \Vhile you can use super to call other
@Override

methods in the parent class, it's public void drive(){

strongly discouraged this.turnOnEngine();
o Use the this keyword instead super.drive(); // super == pirent
cl1ass
o Except when you are calling the this.addPinToMap();
parent’s method within the child’s super.drive();
method of the same name super.drive();
. This is partial overriding } this.addPinToMap();
. What would happen if we said
this.drive() instead of }
28

super.drive()?

Andries van Dam © 2016 9/27/16

Method Resolution (1/2)

® \When we call drive() on some
instance of Porsche, how does
Java know which version of the
method to call?

® Essentially, Java “walks up the
class inheritance tree” from
subclass to superclass until it either:

o finds the method, and calls it

o doesn’t find the method, and
generates a compile-time error. You
can’t send a message for which there
is no method!

Andries van Dam © 2016 9/27/16

g,

~m

-

Car
drive()

?

drive()
topDown ()

Porsche
drive()

29

Method Resolution (2/2)

® \When we call drive() on a
Porsche, Java executes the

drive() method defined in
Porsche

® \When we call topDown() on a
Porsche, Java executes the
topDown () method defined in

T

0
)

Q)
A
o
9

@095,
=

A

(%

R

S
9

2
74

4

Car

drive()
[

drive()
topDown ()

Porsche
drive()

30

Inheritance and Polymorphism (1/3)

® Let's borrow the Racer public class Racer {
class from the example we
discussed in lecture on

interfaces public void useTransportation(Car myCar) {
//code elided

//previous code elided

® However, we change the }
parameter type in method
useTransportation() }
from Transporter to Car

® \Vhat would happen?

o We can only pass in Car
and subclasses of Car

31

Andries van Dam © 2016 9/27/16

Inheritance and Polymorphism (2/3)

® Let's define public class Racer {
useTransportation() //previous code elided
® \Vhat method should public void useTransportation(Car myCar) {

myCar.drive();

we call on myCar? }

o Every Car knows howto
drive, which means we
can guarantee that every
subclass of Car also
knows how to drive

32

Andries van Dam © 2016 9/27/16

Is this legal?

Car convertible = new Convertible(); /
_sophia.useTransportation(convertible);

Car sedan = new Sedan(); /

sophia.useTransportation(sedan);

Car bike = new Bike(); x

_sophia.useTransportation(bike);

Bike is not a subclass of Car, so you cannot

treat an instance of Bike as a Car.

Andries van Dam © 2016 9/27/16

Inheritance and Polymorphism (3/3)

® That’s all we needed to do!

® Our inheritance structure looks really similar to our interfaces structure

o Therefore, we only need to change 2 lines in Racer in order to use any of
our new cars!

o But remember: what's happening behind the curtain is very different:
method resolution “climbs up the hierarchy” for inheritance
® Polymorphism is an incredibly powerful tool
o Allows for generic programming

o Treat multiple classes as their generic type while still allowing specific
method implementations to be executed

® Polymorphism+Inheritance is strong generic coding
34

Andries van Dam © 2016 9/27/16

Question

In the following code, the Elephant subclass extends the Animal superclass,
both of which contain and define an eat() method:

Animal horton = new Elephant();
horton.eat();

Whose eat method is being called?

A. Animal

B. Elephant

C. Sedan

D. None of the above

Andries van Dam © 2016 9/27/16

35

. Assignments Brief Discussion

» Please use common sense and feel free to have variations in your design as
long as:

It adheres to the OOP concepts taught in lecture slides
« It adheres to the instructor’s expectations provided in the assignment
description

* Not possible to describe every possible permutation/combination of
scenarios

* Rubrics

* As you might have noticed we are not marking how exactly you have
implemented any particular method
We are providing marks just for concepts/topics discussed in lecture
« E.g., for assignment-1, identifying actors and methods, encapsulation,
immutable variables, class relationships, etc.
Final type variables: not using them is a faulty design, irrespective of whether
you are setting it via constructor only, or if you did not provide setter, etc.
 Recent disruptions (lectures, tutorials)
« We apologize for recent disruptions in time table schedule due to extra
lectures, moving tutorial groups, merging tutorial groups, etc.
This will be streamlined from next week and time table will be updated
Two extra lectures were required as no lectures next week

Andries van Dam © 2016 9/27/16

Next Lecture

® Inheritance and polymorphism (continued)
® Immutable classes
® Abstract classes

37

