
Lecture 07: Abstract Class
and Immutable Class

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE201: Advanced Programming

Last Lecture: Inheritance & Polymorphism

● Adding new methods
● Accessing superclass fields/methods
● Overriding superclass methods
● Polymorphism
● Method resolution

Method resolution

This Lecture

● Inheritance and Polymorphism (continued from last
lecture)

● Abstract class and abstract methods
● Immutable classes

Slide acknowledgements: CS15, Brown University

2

● Remember from earlier that private
variables are not directly inherited by
subclasses

● If Car does want its subclasses to be
able to access and change the value
of _myRadio, it can define protected
accessor and mutator methods
o Will non-subclasses be able to access

getRadio() and setRadio() ?

● Very carefully consider these design
decisions in your own programs –
which properties will need to be
accessible to other classes?

Indirectly Accessing private Instance Variables in
Superclass by defining Accessors and Mutators

public class Car {

 private Radio _myRadio;

 public Car() {
 _myRadio = new Radio();
 }

 protected Radio getRadio(){
 return _myRadio;
 }
 protected void setRadio(Radio radio){
 _myRadio = radio;
 }

}
3

Andries van Dam © 2016 9/22/16

● Convertible can get a reference
to _radio by calling
this.getRadio()
o Subclasses automatically inherit

these public accessor and
mutator methods

● Note that using “double dot” we’ve
chained two methods together
o First, getRadio is called, and

returns the radio
o Next, setFavorite is called on

that radio

Calling Accessors/Mutators From Subclass

public class Convertible extends Car {
 public Convertible() {
 }

 public void setRadioPresets(){
 this.getRadio().setFavorite(1, 95.5);
 this.getRadio().setFavorite(2, 92.3);
 }
}

4
Andries van Dam © 2016 9/22/16

● Somewhere in our code, a Convertible is instantiated

● The next line of code calls setRadioPresets()
● Let’s step into setRadioPresets()

Let’s step through some code

//somewhere in the program
Convertible convertible = new Convertible();
convertible.setRadioPresets();

5
Andries van Dam © 2016 9/22/16

● When someone calls
setRadioPresets(); first line is
this.getRadio()

● getRadio() returns _myRadio
● What is the value of _myRadio

at this point in the code?
o Has it been initialized?
o Nope, assuming that the

structure of class Car is exactly
as shown on right side (i.e.
without any constructor), we’ll
run into a
NullPointerException here :(

Let’s step through some code
public class Convertible extends Car {
 public Convertible() { //code elided
 }

 public void setRadioPresets() {
 this.getRadio().setFavorite(1, 95.5);
 this.getRadio().setFavorite(2, 92.3);
 }
}

public class Car {

 private Radio _myRadio;

 public Radio getRadio() {
 return _myRadio;
 }
}

6
Andries van Dam © 2016 9/22/16

● Convertible may declare its own instance variables,
which it initializes in its constructor

● Car’s instance variables are initialized in the Car
constructor

● When we instantiate Convertible, how can we make
sure Car’s instance variables are initialized too?
o Case-1: Car has a default constructor that instantiate all its fields
o Case-2: Car has a parameterized constructor for initializing all its

fields

Making Sure Superclass’s Instance Variables are Initialized

7
Andries van Dam © 2016 9/22/16

● Let’s assume that Car’s instance
variables (like _radio) are
initialized in Car’s default
constructor

● Whenever we instantiates
Convertible, default constructor
of Car is called automatically

● To explicitly invoke Car’s default
constructor, we can call super()
inside the constructor of
Convertible
o Can only make this call once, and it

must be the very first line in the
subclass’s constructor

super(): Invoking Superclass’s Default Constructor (Case 1)

public class Convertible extends Car {

 private ConvertibleTop _top;

 public Convertible() {
 super();
 _top = new ConvertibleTop();
 this.setRadioPresets();
 }

 public void setRadioPresets(){
 this.getRadio().setFavorite(1, 95.5);
 this.getRadio().setFavorite(2, 92.3);
 }
}

8
Andries van Dam © 2016 9/22/16

● What if the superclass’s constructor
takes in a parameter?
o We’ve modified Car’s constructor to

take in a Racer as a parameter
o How do we invoke this constructor

correctly from the subclass?

● In this case, need the
Convertible’s constructor to also
take in a Racer

● The Racer is then passed as an
argument to super() – now
Racer’s constructor will initialize
_driver to the instance of Racer
that was passed to the
Convertible

public class Car {

 private Racer _driver;
 public Car(Racer driver) {
 _driver = driver;
 }

}

9

public class Convertible extends Car {

 private ConvertibleTop _top;

 public Convertible(Racer driver) {
 super(driver);
 _top = new ConvertibleTop();
 }

}

super(): Invoking Superclass’s Parameterized Constructor (Case 2)

Andries van Dam © 2016 9/22/16

● What if we forget to call super()?
● If you don’t explicitly call super() first

thing in your constructor, Java
automatically calls it for you, passing
in no arguments

● But if superclass’s constructor
requires a parameter, you’ll get an
error!

● In this case, we get a compiler error
saying that there is no constructor
“public Car()”, since it was
declared with a parameter

What if we don’t call super()?

public class Convertible extends Car {

 private ConvertibleTop _top;

 public Convertible(Racer driver) {
 //oops forgot to call super()
 _top = new ConvertibleTop();
 }

}

10
Andries van Dam © 2016 9/22/16

● What if we wanted to seat all of
the passengers in the car?

● Sedan, Convertible, and Van all
have different numbers of seats
o They will all have different

implementations of the same
method

How to Load Passengers?

Andries van Dam © 2016 9/22/16

11

Solution-1: Using Constructor Parameters
public class Convertible extends Car {
 private Passenger _p1;
 public Convertible(Racer driver, Passenger p1) {
 super(driver);
 _p1 = p1;
 }
 //code with passengers elided
}

public class Sedan extends Car {
 private Passenger _p1, _p2, _p3, _p4;
 public Sedan(Racer driver, Passenger p1,

Passenger p2, Passenger p3, Passenger p4) {
 super(driver);
 _p1 = p1;
 _p2 = p2;
 _p3 = p4;
 }
 //code with passengers elided
}

• Notice how we only
need to pass driver
to super()

• We can add additional
parameters in the
constructor that only
the subclasses will use

• Note that super() has
to be the first
statement inside the
constructor. 12

Andries van Dam © 2016 9/22/16

● How about creating an interface Passengers with a
method loadPassenger?
o Which class should implement that?

§ Superclass (Car) or Subclasses (Convertible, Sedan, and Van) ?
o Issues

§ Creating an extra interface (possibly a new file)
§ Each subclass should have the declaration in the following form:

• public class Sedan extends Car implements Passengers { …. }

Any drawbacks in Previous Approach?

13
© Vivek Kumar

● We declare a method abstract in a superclass when the
subclasses can’t really re-use any implementation the
superclass might provide

● In this case, we know that all Cars should
loadPassengers, but each subclass will loadPassengers
very differently

● abstract method is declared in superclass, but not
defined – up to subclasses farther down hierarchy to
provide their own implementations

abstract Methods and Classes

Andries van Dam © 2016 9/22/16

14

● Here, we’ve modified Car to make it
an abstract class: a class with
preferably an abstract method
o You can avoid abstract method and just

mark class as abstract if you don’t wish
to allow object creation of this class

● We declare both Car and its
loadPassengers method
abstract: if one of a class’s
methods is abstract, the class
itself must also be declared
abstract

● An abstract method is only
declared by the superclass, not
implemented – use semicolon after
declaration instead of curly braces

public abstract class Car {

 private Racer _driver;

 public Car(Racer driver) {
 _driver = driver;
 }

 public abstract void loadPassengers();

}

Andries van Dam © 2016 9/22/16

15

Solution-2: Using abstract Methods and
Classes

● All concrete subclasses of Car
override by providing a concrete
implementation for Car’s abstract
loadPassengers() method

● As usual, method signature must
match the one that Car declared

Solution-2: Using abstract Methods and
Classes

public class Convertible extends Car{
 @Override
 public void loadPassengers(){
 Passenger p1 = new Passenger();
 p1.sit();
 }
}

public class Sedan extends Car{
 @Override
 public void loadPassengers(){
 Passenger p1 = new Passenger();
 p1.sit();

 Passenger p3 = new Passenger();
 p3.sit();
 }
}

public class Van extends Car{
 @Override
 public void loadPassengers(){
 Passenger p1 = new Passenger();
 p1.sit();

 Passenger p6 = new Passenger();
 p6.sit();
 }
}

Andries van Dam © 2016 9/22/16

16

● abstract classes cannot be instantiated!
o This makes sense – shouldn’t be able to just instantiate a generic Car, since it has no

code to loadPassengers()
o Instead, provide implementation of loadPassengers() in concrete subclass, and

instantiate subclass
● Subclass at any level in inheritance hierarchy can make abstract method

concrete by providing implementation
● Even though an abstract class can’t be instantiated, its constructor must still be

invoked via super() by a subclass
o because only the superclass knows about (and therefore only it can initialize) its own

instance variables

abstract Methods and Classes

Andries van Dam © 2016 9/22/16

17

● You might be wondering: what’s the difference between abstract
classes and interfaces?

● abstract Classes:
o Can define instance variables
o Can define a mix of concrete and abstract methods
o You can only inherit from one class

● Interfaces:
o Cannot define any instance variables/concrete methods
o You can implement multiple interfaces

So.. What’s the difference?

Note: Java, like most programming languages, is evolving. In Java 8, interfaces and abstract classes are
even closer in that you can have concrete methods in interfaces. We will not make use of this in CSE201.

Andries van Dam © 2016 9/22/16

18

What if the Cars are Getting Modified?

19

No modifications
should ever be

allowed !!

© Vivek Kumar

20

public class Mechanics {
 private final String oilType;
 private final int numCylinders;
 public Mechanics(String oil, int cylinders)
 public String getOilType();
 public int getNumCylinders();
}

1. Don't provide any methods
that modify the object's
state.

2. Make all fields private.
(ensure encapsulation)

3. Make all fields final.

Immutable Classes (1/5)

© Vivek Kumar

Question
● Immutable classes have their fields marked as final. Then,

why can’t we make those fields as public and let clients
access them without any getter methods ?

21© Vivek Kumar

22

1. Don't provide any methods
that modify the object's
state.

2. Make all fields private.
(ensure encapsulation)

3. Make all fields final.

public class Tire {
 private int size;
 public int getSize();
 public void setSize(int);
}

public class Mechanics {
 public final Tire tire;

 public Tire getTire(){return tire;}
}

// The user can easily do this:
mechanics.tire.setSize(20);

Immutable Classes (2/5)

© Vivek Kumar

23

public class Mechanics {
 private final Tire tire;

 public Tire getTire(){return tire;}
}

// The user can easily do this:
mechanics.getTire().setSize(20);

public class Tire {
 private int size;
 public int getSize();
 public void setSize(int);
}

1. Don't provide any methods
that modify the object's
state.

2. Make all fields private.
(ensure encapsulation)

3. Make all fields final.

Immutable Classes (3/5)

© Vivek Kumar

24

public class Mechanics {
 private final String oilType;
 private final int numCylinders;

 public Mechanics(String oil, int cylinders)
 public String getOilType();
 public int getNumCylinders();
}

public class ModifiedMechanics extends Mechanics {

 @Override
 public String getOilType(){
 return “Rocket Fuel”;
 }
 @Override
 public int getNumCylinders(){return 18;}//Bugatti
}

How to fix this?How to fix these?

Immutable Classes (4/5)

© Vivek Kumar

25

public class final Mechanics {
 private final String oilType;
 private final int numCylinders;

 public Mechanics(String oil, int cylinders)
 public String getOilType();
 public int getNumCylinders();
}

Mechanics cannot be extended
as it is declared as final

public class ModifiedMechanics extends Mechanics {

 @Override
public String getOilType(){

 return “Rocket Fuel”;
}
@Override
public int getNumCylinders(){return 18;}//Bugatti

}

Immutable Classes (5/5)

© Vivek Kumar

Summary: Making a Class Immutable
1. Don't provide any methods that modify the object's state.
2. Make all fields private. (ensure encapsulation)
3. Make all fields final.
4. Ensure exclusive access to any mutable object fields.

o Don't let a client get a reference to a field that is a mutable object (don't
allow any mutable representation exposure.)

5. Ensure that the class cannot be extended.

26© Vivek Kumar

● Class Object

Next Lecture

27

