
Lecture 08: The Object Class
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE201: Advanced Programming

This Lecture

● Class Object
o equals method
o Comparable and Comparator
o Clonning

● Do you see
any similarities
between a Cat,
Universe, and
Furniture?
o If you just look

at their
photographs
then its hard
to guess..

Can You Spot Any Similarities?

2
© Vivek Kumar

● Now we have a
class
representation of
Cat, Universe
and Furniture
o Do you see any

similarities now?

OK, Can You Spot Any Similarities NOW ?

3

public class Cat {

 private String name;
 private String breed;

 public Cat() { ... }

}

public class Universe {

 private List<Star> star;

 public Universe(){ ... }

}

public class Furniture {

 private List<Star> star;

 public Furniture(){ ... }

}

© Vivek Kumar

● What if I tell you that although they look totally unrelated to
each other, still they all inherit from a common class, i.e.,
they have a common parent!

They Inherit from Someone!

4
© Vivek Kumar

● Every Java class has
Object as its superclass
and thus inherits the
Object methods
o Due to this, although Cat,

Universe and Furniture
are totally unrelated, they
still inherit from class
Object

The Class Object in Java

5

public class Object {

 public Object() { ... }

}

© Vivek Kumar

The Class Object

6

● The class Object forms the root of the
overall inheritance tree of all Java classes.
o Every class is implicitly a subclass of Object
o No need to explicitly say “extends Object”

● The Object class defines several methods
that become part of every class you write.
For example:
o public String toString()

Returns a text representation of the object,
usually so that it can be printed.

Object

equals
clone

finalize
getClass
hashcode
notify

notifyAll
toString

wait

Cat

...

© Vivek Kumar

Object Methods

7

method description

protected Object clone() creates a copy of the object

public boolean equals(Object o) returns whether two objects have the
same state

protected void finalize() called during garbage collection

public Class<?> getClass() info about the object's type

public int hashCode() a code suitable for putting this object into
a hash collection

public String toString() text representation of the object

public void notify()
public void notifyAll()
public void wait()
public void wait(...)

methods related to concurrency and
locking (seen later)

● You can store any object in a variable of type Object.
Object o1 = new Cat(“Meau”, “Indian Cat”);
Object o2 = "hello there";

● You can write methods that accept an Object parameter.
public void example(Object o) {
 if (o != null) {
 System.out.println("o is " + o.toString());
 }

● You can make arrays or collections of Objects.
Object[] a = new Object[5];
a[0] = "hello";
a[1] = new Cat();
List<Object> list = new ArrayList<Object>();

Using the Object Class

8
© Vivek Kumar

Question: speak() is a
method in Cat class, is this

correct?
1) o1.speak()

2) o1.toString()

Point p1 = new Point(5,3);
Point p2 = new Point(5,3);
Point p3 = p2;

// p1 == p2 is false;
// p1 == p3 is false;
// p2 == p3 is true

// p1.equals(p2)?
// p2.equals(p3)?

Equality Test on Objects

9

...
x 5 y 3p1

p2
...
x 5 y 3

p3

● The == operator does not work well with
objects.
 == tests for referential equality, not state-

based equality.
 It produces true only when you compare an

object to itself

● The Object class's equals implementation is very simple:

public class Object {
 ...
 public boolean equals(Object o) {
 return this == o;
 }
}

● The Object class is designed for inheritance.
o Subclasses can override equals to test for equality in their own way

Default equals Method

10

Is this Correctly Implemented

11

1. public class Point {
2. private int x, y;
3. public Point(int _x, int _y) { ... }
4. @Override
5. public boolean equals(Point o) {
6. return (x==o.x && y==o.y);
7. }
8. }
9.

● Wrong Implementation !
o Flaw-1

§ Signature of equals
method doesn’t matches
with that in class Object

§ Compilation error as we
are not overriding!

o The parameter to equals
method is not of type
Object but is of type Point
§ This is method overloading

and not overriding

© Vivek Kumar

● Still incorrect !
o Flaw-2

§ Compilation error as the
parameter to equals is of
Object type but then x and y
is not defined in class Object

o Can we can do the following:
 Object o1 = new Point(1, 2);
 // Type casting below
 Point p = (Point) o1;

Is this Correctly Implemented NOW ?

12

1. public class Point {
2. private int x, y;
3. public Point(int _x, int _y) { ... }
4. @Override
5. public boolean equals(Object o) {
6. return (x==o.x && y==o.y);
7. }
8. }
9.

© Vivek Kumar

Is this Correctly Implemented NOW ?

13

1. public class Point {
2. private int x, y;
3. public Point(int _x, int _y) { ... }
4. @Override
5. public boolean equals(Object o1) {
6. Point o = (Point) o1; //type casting
7. return (x==o.x && y==o.y);
8. }
9. }
10.

● Still incorrect !
o Flaw-3

§ It compiles and works fine if
Point type objects are passed
but fail to compile if non-Point
type objects are passed

o The typecasting will be an issue
for following statement

 Object o1=new Point(1,2);
 Object o2=“hello”;
 boolean cond=o1.equals(o2);
o The flaw is in line 6 as not every

Object will be of Point type:
 Point o = (Point) o1;
 ClassCastException!!

© Vivek Kumar

if (variable instanceof type) {
 statement;
}

● Tests whether variable refers
to an object of class type (or
any subclass of type)

String s = "hello";
Point p = new Point();

The instanceof Keyword

14

expression result
s instanceof Point false

s instanceof String true

p instanceof Point true

p instanceof String false

p instanceof Object true

s instanceof Object true

null instanceof String false

null instanceof Object false

(null is a reference and is not an object)

Is this Correctly Implemented NOW ?

15

1. public class Point {
2. private int x, y;
3. public Point(int _x, int _y) { ... }
4. @Override
5. public boolean equals(Object o1) {
6. if(o1 instanceof Point) {
7. Point o = (Point) o1; //type casting
8. return (x==o.x && y==o.y);
9. }
10. else {
11. return false;
12. }
13. }
14. }
15. // subclass of Point
16. class Point3D extends Point {
17. private int z;
18. public Point3D(int_x,int _y,int _z) {...}
19.
20. }

● Still incorrect !
o Flaw-4

§ The method equals will not
behave correctly if Point
class is extended

Point3D p1 = new Point3D(1,2,0);
Point3D p2 = new Point3D(1,2,3);
Point p3 = new Point(1,2);
p1.equals(p2); // true
p2.equals(p3); // true
p3.equals(p1); // true

© Vivek Kumar

Is this Correctly Implemented NOW ?

16

1. public class Point {
2. private int x, y;
3. public Point(int _x, int _y) { ... }
4. @Override
5. public boolean equals(Object o1) {
6. if(o1 instanceof Point) {
7. Point o = (Point) o1; //type casting
8. return (x==o.x && y==o.y);
9. }
10. else {
11. return false;
12. }
13. }
14. }
15. // subclass of Point
16. class Point3D extends Point {
17. private int z;
18. public Point3D(int _x, int _y, int _z) { ... }
19. @Override
20. public boolean equals(Object o1) {
8. if(o1 instanceof Point3D) {
9. Point3D o = (Point3D) o1; //type casting
8. return (super.equals(o1) && z==o.z);
9. }
10. else {
11. return false;
12. }
13. }
14. }

● Still incorrect !
o Flaw-5

§ It produces asymmetric
results when Point and
Point3D are mixed

Point p1 = new Point(1,2);
Point3D p2 = new Point3D(1,2,3);
p1.equals(p2); // true
p2.equals(p1); // false

Equality should be symmetric !!

© Vivek Kumar

● Equality is reflexive:
o a.equals(a) is true for every object a

● Equality is symmetric:
o a.equals(b) ↔ b.equals(a)

● Equality is transitive:
o (a.equals(b) && b.equals(c)) ↔ a.equals(c)

● No non-null object is equal to null:
o a.equals(null) is false for every object a

Rules of Equality for Any Two Objects

17

Finally, the Correct Implementation

18

1. public class Point {
2. private int x, y;
3. public Point(int _x, int _y) { ... }
4. @Override
5. public boolean equals(Object o1) {
6. if(o1 != null && getClass() == o1.getClass()) {
7. Point o = (Point) o1; //type casting
8. return (x==o.x && y==o.y);
9. }
10. else {
11. return false;
12. }
13. }
14. }
15. // subclass of Point
16. class Point3D extends Point {
17. private int z;
18. public Point3D(int _x, int _y, int _z) { ... }
19. @Override
20. public boolean equals(Object o1) {
8. if(o1 != null && getClass() == o1.getClass()) {
9. Point3D o = (Point3D) o1; //type casting
8. return (super.equals(o1) && z==o.z);
9. }
10. else {
11. return false;
12. }
13. }
14. }

● getClass returns information
about the type of an object
o Stricter than instanceof;

subclasses return different
results

● getClass should be used
when implementing equals
o Instead of instanceof to check

for same type, use getClass
o This will eliminate subclasses

from being considered for
equality

o Caution: Must check for null
before calling getClass

© Vivek Kumar

Comparing Objects

19© Vivek Kumar

Comparing Objects in Java

20

.equals() = true

.equals() = false

Can we use equals to get the
above arrangement?

● We have seen
how to check
equality between
two objects:
o Obj1 == Obj2
o Obj1.equals(O

bj2)
● But how to check

the following:
o Obj1 < Obj2
o Obj1 > Obj2

● Operators like <
and > do not work
with objects in
Java

© Vivek Kumar

Comparing Objects in Java
A call of A.compareTo(B)
should return:
 // if A comes "before" B in
 // the ordering, a value < 0
 // if A comes ”after" B in
 // the ordering, a value > 0
 // or exactly 0 if A and B
 // are “equal” in the ordering

21

.compareTo() > 0

.compareTo() < 0

.compareTo() = 0

© Vivek Kumar

The Comparable Interface
● The standard way for a Java class to define a comparison

function for its objects is to implement the Comparable
interface.

public interface Comparable<T> {
 public int compareTo(T other);
}

22
© Vivek Kumar

compareTo Example
● In this Rectangle

class, the
compareTo
method compares
the Rectangle
objects as per
their area

● You can choose
your own
comparison
algorithm!

23

public class Rectangle implements Comparable<Rectangle> {
 private int sideA, sideB, area;
 public Rectangle (int _a, int _b) { ... }

 @Override
 public int compareTo(Rectangle o) {
 if(area == o.area) return 0;
 else if(area < o.area) return -1;
 else return 1;
 }
}

© Vivek Kumar

compareTo v/s equals
// Area1 = 2 x 32 = 64

Rectangle r1=Rectange(2, 32);

// Area2 = 4 x 16 = 64

Rectangle r2=Rectange(4, 16);

if(r1.compareTo(r2)==0) {

 // is this true??

}

if(r1.equals(r2)) {

 // is this true??

}

24

public class Rectangle implements Comparable<Rectangle> {
 private int sideA, sideB, area;
 public Rectangle (int _a, int _b) { ... }

 @Override
 public int compareTo(Rectangle o) {
 if(area == o.area) return 0;
 else if(area < o.area) return -1;
 else return 1;
 }
 @Override
 public boolean equals(Object o1) {
 if(o1 != null && getClass() == o1.getClass()) {
 Rectangle o = (Rectangle) o1; //type casting
 return (sideA==o.sideA && sideB==o.sideB);
 }
 else {
 return false;
 }
 }
}

© Vivek Kumar

Recall, that two Rectangles with
same area could still have different
values for sideA and sideB

How to Compare Two Objects in Different
Styles ?
● Our Rectangle class can only implement one compareTo

method and hence only one comparison algorithm (style)
● We may want to compare two Rectangles differently

o Based on sides
o Based on area
o ……

25
© Vivek Kumar

Comparator Interface
public interface Comparator<T> {
 public int compare(T first, T second);
}

● Interface Comparator is an external object that specifies a
comparison function over some other type of objects.
o Allows you to define multiple orderings for the same type.
o Allows you to define a specific ordering for a type even if there is

no obvious "natural" ordering for that type

26
© Vivek Kumar

Comparator Example

27

public class RectangleAreaComparator

 implements Comparator<Rectangle> {

 @Override

 public int compare(Rectangle r1, Rectangle r2) {

 return r1.getArea() - r2.getArea();

 }

}

public class RectangleSidesComparator

 implements Comparator<Rectangle> {

 @Override

 public int compare(Rectangle r1, Rectangle r2) {

 if (r1.getSideA() != r2.getSideA()) {

 return r1.getSideA() - r2.getSideA();

 } else {

 return r1.getSideB() - r2.getSideB();

 }

 }

}

● Using Comparators, two
objects could be compared
in different possible ways

● For creating different
comparison, implement
different objects of
Comparator type

© Vivek Kumar

Class Main {

public static void main(String[] args) {

 Rectangle r1=Rectange(2, 32);

 Rectangle r2=Rectange(4, 16);

 RectangleAreaComparator rac = new RectangleAreaComparator();

 RectangleSidesComparator rsc = new RectangleSidesComparator();

 int area_result = rac.compare(r1, r2);

 int sides_result = rsc.compare(r1, r2);

}

}

Benefits of Comparator

28

● Java Collections class (covered later) provide method for
sorting elements of collections

 public static <T> void sort(List<T> list, Comparator(? super T> c)
● You can sort list of Rectangles based on different criteria

using the Comparator interface
 Collections.sort(list, new RectangleAreaComparator());
 Collections.sort(list, new RectangleSidesComparator());

© Vivek Kumar

Copying Objects

29
© Vivek Kumar

Copying objects
● In other languages (common in C++), to enable clients to easily make

copies of an object, you can supply a copy constructor :

// in client code
Point p1 = new Point(-3, 5);
Point p2 = new Point(p1); // make p2 a copy of p1

// in Point.java
public Point(Point blueprint) { // copy constructor
 this.x = blueprint.x;
 this.y = blueprint.y;
}

o Java has some copy constructors but also has a different way... 30

Object clone method
protected Object clone()
 throws CloneNotSupportedException

o Creates and returns a copy of this object. General intent:
§ x.clone() != x
§ x.clone().equals(x)
§ x.clone().getClass() == x.getClass()

• (though none of the above are absolute requirements)

31

clone() must be Implemented
● If we want to clone Point type objects, Point class must

implement clone() method

● You must also make your class implement the Cloneable
interface to signify that it is allowed to be cloned

32

The Cloneable interface
public interface Cloneable {}

● Why would there ever be an interface with no methods?
o Another example: Set interface, a sub-interface of Collection

● Tagging/marker interface: One that does not contain/add any methods,
but is meant to mark a class as having a certain quality or ability.
o Generally a wart in the Java language; a misuse of interfaces.
o Now largely unnecessary thanks to annotations (seen later).
o But we still must interact with a few tagging interfaces, like this one.

● Let's implement clone for a Point class... 33

What's Wrong with the Below Method?
public class Point implements Cloneable {

 private int x, y;
 ...
 public Point clone() {
 Point copy = new Point(this.x, this.y);
 return copy;
 }
 }

34

The flaw
// also implements Cloneable and inherits clone()

 public class Point3D extends Point {
 private int z;
 ...
 }

● The above Point3D class's clone method produces a Point!
o This is undesirable and unexpected behavior.
o The only way to ensure that the clone will have exactly the same type as the

original object (even in the presence of inheritance) is to call the clone
method from class Object with super.clone() .

35

Proper clone method (1/2)
public class Point implements Cloneable {

 private int x, y;
 ...
 public Point clone() {
 try {
 Point copy = (Point) super.clone();
 return copy;
 } catch (CloneNotSupportedException e) {
 // this will never happen
 return null;
 }
 }
 }

o To call Object's clone method, you must use try/catch.
§ But if you implement Cloneable, the exception will not be thrown.

36

Proper clone method (2/2)
public class Point implements Cloneable {

 private int x, y;

 ...
 public Point clone() {
 try {

 Point copy = (Point) super.clone();
 return copy;

 } catch (CloneNotSupportedException e) {

 // this will never happen

 return null;

 }

 }

 }

37

public class Point3D extends Point {

 int z;

 ...

 public Point3D clone() {

 Point3D p = (Point3D) super.clone();

 p.z = this.z;

 return p;

 }

}

● Every subclass should re-implement clone and must call super.clone() internally
● Only the topmost class in parent-child hierarchy should call super.clone() inside

try/catch exception handling block

What's Still Wrong with the Below Method?
public class BankAccount implements Cloneable {
 private String name;
 private List<String> transactions;
 ...
 public BankAccount clone() {
 try {
 BankAccount copy = (BankAccount) super.clone();
 return copy;
 } catch (CloneNotSupportedException e) {
 return null; // won't ever happen
 }
 }
}

38

Shallow vs. deep copy
● shallow copy: Duplicates an object without duplicating any other

objects to which it refers.

● deep copy: Duplicates an object's entire reference graph: copies
itself and deep copies any other objects to which it refers.

original
int x = [42]
double y = [3.14]
Scanner in = []
List data = []

ArrayList object

Scanner object
clone

int x = [42]
double y = [3.14]
Scanner in = []
List data = []

original
int x = [42]
double y = [3.14]
Scanner in = []
List data = []

ArrayList object

Scanner object
clone

int x = [42]
double y = [3.14]
Scanner in = []
List data = []

ArrayList object

Scanner object

39

Proper clone method 2
public class BankAccount implements Cloneable {
 private String name;
 private List<String> transactions;
 ...
 public BankAccount clone() {
 try { // deep copy
 BankAccount copy = (BankAccount) super.clone();
 copy.transactions = new ArrayList<String>(transactions);
 return copy;
 } catch (CloneNotSupportedException e) {
 return null; // won't ever happen
 }
 }
}

o Copying the list of transactions (and any other modifiable reference fields)
produces a deep copy that is independent of the original

40

Next Lecture
● Generic programming
● Quiz-2

o Syllabus: Lectures 04-07
● Assignment-3 (inheritance & polymorphism)

o Assignment-4 will build on assignment-3, so please submit
assignment-3 for attempting assignment-4

41

