
Lecture 10: Exception Handling
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE201: Advanced Programming

© Vivek Kumar

Today’s Lecture: Exceptions

2

Being Defensive is Important

3
© Vivek Kumar

Defensive Programming

4

● Murphy’s law
o “Anything that can possibly go wrong, does.”

● Finagle’s law
o “Anything that can go wrong, will – at the worst possible moment.”

● Sod’s law
o “If something can go wrong, it will”

Defensive programming: Hope for the best, expect the worst!

© Vivek Kumar

Defensive Programming

5

● Collection of techniques to reduce the risk of failure at run
time
o An analogy is defensive driving by being never sure how other

drivers would be driving

● The technique is in making the software behave in a
predictable manner despite unexpected inputs or user
actions and internal errors
o After all debugging takes a lot of time!

© Vivek Kumar

Types of Programming Errors

6

● Syntax errors
o Compile time errors
o Easiest to fix

● Logical errors
o Program runs without crashing but gives incorrect result
o Most difficult to fix

● Runtime errors
o Occur while the program is running if the environment detects an

operation that is impossible to carry out
o Could be fixed easily with defensive programming

§ Exception handling!

Andries van Dam © 2016 9/22/16

Exception Handling Syntax

7

● Process for handling exceptions
o try some code, catch exception thrown by tried code, finally, “clean up” if

necessary
o try, catch, and finally are reserved words

● try denotes code that may throw an exception
o place questionable code within a try block
o a try block must be immediately followed by a catch block unlike an if w/o else
o thus, try-catch blocks always occurs as pairs

● catch exception thrown in try block and write special code to handle it
o catch blocks distinguished by type of exception
o can have several catch blocks, each specifying a particular type of exception
o Once an exception is handled, execution continues after the catch block

● finally (optional)
o special block of code that is executed whether or not an exception is thrown
o follows catch block

Andries van Dam © 2016 9/22/16

Trace a try/catch Program Execution (1/3)

8

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

Suppose no exceptions in the
statements

Trace a try/catch Program Execution (2/3)

9

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

The final block is always
executed

Trace a try/catch Program Execution (3/3)

10

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

Next statement in the method is
executed

Trace a try/catch Program Execution (1/4)

11

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

Suppose an exception of type
Exception1 is thrown in statement2

Trace a try/catch Program Execution (2/4)

12

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

The exception is handled.

Trace a try/catch Program Execution (3/4)

13

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

The final block is always executed.

Trace a try/catch Program Execution (4/4)

14

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

The next statement in the method is
now executed.

Is this Defensive Programming ?

15

● Is program correct?
o Yes

§ But, only if the user is
paying attention
• Invalid input ?
• String as input?

import java.util.*;
public class Main {

 public static void main(String[] args) {

 System.out.println(“Enter Integer Input”);

 Scanner sc = new Scanner(System.in);
 int num = sc.nextInt();

 }
 }
}

© Vivek Kumar

Exception Handling using try/catch

16

● This is a foolproof
program now!

● Exception handling
using try/catch
block of statements
o Defensive programming

● InputMismatchException
is a type of exception
provided by the
Scanner class in Java

import java.util.*;
public class Main {

 public static void main(String[] args) {
 boolean done = false;
 while(!done) {
 System.out.println(“Enter Integer Input”);
 try {
 Scanner sc = new Scanner(System.in);
 int num = sc.nextInt(); //exception
point done = true;
 }
 catch(InputMismatchException inp) {
 System.out.println(“Wrong input:”);
 System.out.println(“Try again”);
 }
 finally {
 System.out.println(“Always execute”);
 }
 }
 }
}

© Vivek Kumar

Multiple catch Blocks

17

import java.util.*;
public class Main {
 public static void main(String[] args) {
 String[] s = {“a”, “23”, null, “4”, “P”};
 int sum = 0;
 for(int i=0; i<10; i++) {
 try {
 sum += (s[i].length() > 0) ?
 Integer.parseInt(s[i]) : 0;
 }
 catch(NumberFormatException e) {
 System.out.println(“Not an Integer”);
 }
 catch(NullPointerException e) {
 System.out.println(“NULL value
found”);
 }
 catch(ArrayIndexOutOfBoundsException e) {
 System.out.println(“Index not in
range”);
 }
 }
 }
}

© Vivek Kumar

Multiple catch Blocks

18

● There could be multiple
catch for a single try block

● They are designed to catch
different types of exceptions
that could be raised from a
single try block

● How the exceptions are
generated here?
o i=0 will raise

NumberFromatException
o i=2 will raise

NullPointerException
o i=4 will raise

NumberFormatException
o i>4 will raise

ArrayIndexOutOfBounds
exception

import java.util.*;
public class Main {
 public static void main(String[] args) {
 String[] s = {“a”, “23”, null, “4”, “P”};
 int sum = 0;
 for(int i=0; i<10; i++) {
 try {
 sum += (s[i].length() > 0) ?
 Integer.parseInt(s[i]) : 0;
 }
 catch(NumberFormatException e) {
 System.out.println(“Not an Integer”);
 }
 catch(NullPointerException e) {
 System.out.println(“NULL value
found”);
 }
 catch(ArrayIndexOutOfBoundsException e) {
 System.out.println(“Index not in
range”);
 }
 }
 }
}

© Vivek Kumar

Question

19

● What is the output of
the following program?

● Answer
o Compilation error!
o No statement is

allowed between a pair
of try and catch

o error: 'catch'
without 'try'

public class Main {
 public static void main(String[] args) {
 String s = null;
 try {
 int length = s.length();
 }

 System.out.println(“Just before catch block”);

 catch(NullPointerException e) {
 System.out.println(“String was null”);
 }
 }
}

© Vivek Kumar

Nested try/catch Blocks

20

● try/catch block
could be nested!
o If Andy’s call to

getADrink from Wendy
returns null, he can ask
Johny to getADrink

public class Andy {

 public void getWater() {
 try {
 _water = _wendy.getADrink();
 int volume = _water.getVolume();
 }
 catch(NullPointerException e) {
 this.fire(_wendy);
 System.out.println(“Wendy is fired!”);
 try {
 _water = johny.getADrink();
 int volume = _water.getVolume();
 }
 catch(NullPointerException e) {
 this.fire(johny);
 System.out.println(“Johny is fired!”);
 }
 }
 }
}

© Vivek Kumar

Methods Can throw Exception

21

● If you wish to throw an
exception in your code you
use the throw keyword

● Most common would be for
an unmet precondition

● When the program detects
an error, the program can
create an instance of an
appropriate exception type
and throw it:

 throw new TheException(“Message”);
● In the above constructor call

for the exception, the
message is optional but it’s
always good to pass some
meaningful message

public class Andy {

 public void drinkWater() {
 try {
 getWater();
 }
 catch(NullPointerException e) {
 System.out.println(e.getMessage());
 }
 }
 public void getWater() {
 _water = _wendy.getADrink();
 if(_water == null) {
 this.fire(_wendy);
 System.out.println(“Wendy is fired!”);
 throw new NullPointerException(“NO Water”);
 }
 }
}

© Vivek Kumar

Re-throwing Exception

22

● The caught exceptions
can be re-thrown
using throw keyword

● Re-thrown exception
must be handled some
where in the program,
otherwise program will
terminate abruptly

public class Andy {

 public void drinkWater() {
 try {
 getWater();
 }
 catch(NullPointerException e) {
 System.out.println(e.getMessage());
 }
 }
 public void getWater() {
 try {
 _water = _wendy.getADrink();
 int volume = _water.getVolume();
 }
 catch(NullPointerException e) {
 this.fire(_wendy);
 System.out.println(“Wendy is fired!”);
 throw new NullPointerException(“NO Water”);
 }
 }
}

© Vivek Kumar

Trace a try/catch Program Execution (1/4)

23

try {

 statement1;

 statement2;
 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

catch(Exception2 ex) {

 handling ex;

 throw ex;

}

finally {

 finalStatements;

}

Next statement;

statement2 throws an exception of
type Exception2.

Trace a try/catch Program Execution (2/4)

24

try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

catch(Exception2 ex) {

 handling ex;
 throw ex;

}

finally {

 finalStatements;

}

Next statement;

Handling exception

Trace a try/catch Program Execution (3/4)

25

try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

catch(Exception2 ex) {

 handling ex;

 throw ex;

}

finally {

 finalStatements;
}

Next statement;

Execute the final block

Trace a try/catch Program Execution (4/4)

26

try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

catch(Exception2 ex) {

 handling ex;

 throw ex;
}

finally {

 finalStatements;

}

Next statement;

Rethrow the exception and control is
transferred to the caller

How Exceptions are Handled by JVM

27

● Any method invocation is represented as a “stack frame” on
the Java “stack”
o Callee-Caller relationship

§ If method A calls method B then A is caller and B is callee
o Each frame stores local variables, input parameters, return values

and intermediate calculations
§ In addition, each frame also stores an “exception table”
§ This exception table stores information on each try/catch/finally

block, i.e. the instruction offset where the catch/finally blocks are
defined

o When an exception is thrown, JVM does the following:
1. Look for exception handler in current stack frame (method)
2. If not found, then terminate the execution of current method and go to

the callee method and repeat step 1 by looking into callee’s exception
table

3. If no matching handler is found in any stack frame, then JVM finally
terminates by throwing the stack trace (printStackTrace method)

D ()

C ()

B ()

A ()

© Vivek Kumar

Exception Hierarchy

28

● Exceptions are classes that
extends Throwable

● Come in two types
o Checked exceptions

§ Those that must be handled
somehow (we will see soon)
• E.g., IOException – file

reading issue
o Unchecked exceptions

§ Those that do not
• E.g., RuntimeExceptions

that is caused due to
programming errors

• You should not attempt to
handle exceptions from
subclass of Error
• Rarely occurring

exceptions that even if
you try to handle,
there is little you can
do beyond notifying
the user and trying to
terminate the program
gracefully

Throwable

Error Exception

RuntimeException IOException
ClassNotFoundException

CloneNotSupportedException
...........

NullPointerException
ArrayIndexOutOfBoundException

NumberFormatException
............

OutOfMemoryError
StackOverflowError

.........

© Vivek Kumar

Handling Checked Exception (1/3)

29

● If we have code that tries to
build a FileReader we must
deal with the possibility of
the exception
o The code contains a syntax

error. "unreported
exception
java.io.FileNotFoundExce
ption
§ must be caught or declared

to be thrown

import java.io.FileReader;

public class Tester {
 public int countChars(String fileName) {
 FileReader r = new FileReader(fileName);
 int total = 0;
 while(r.ready()) {
 r.read();
 total++;
 }
 r.close();
 return total;
 }
}

© Vivek Kumar

Handling Checked Exception (2/3)

30

● Here, there are 4 statements
that can generate checked
exceptions:
o The FileReader constructor
o the ready method
o the read method
o the close method

● To deal with the exceptions we
can either state this method
”throws” an Exception of the
proper type or handle the
exception within the method
itself

import java.io.FileReader;

public class Tester {
 public int countChars(String fileName) {
 FileReader r = new FileReader(fileName);
 int total = 0;
 while(r.ready()) {
 r.read();
 total++;
 }
 r.close();
 return total;
 }
}

© Vivek Kumar

Handling Checked Exception (3/3)

31

● It may be that we don't know
how to deal with an error
within the method that can
generate it

● In this case we will pass the
buck to the method that called
us

● The keyword throws is used
to indicate a method has the
possibility of generating an
exception of the stated type

● Now any method calling ours,
must also throw an exception
or handle it

import java.io.FileReader;

public class Tester {
 public int countChars(String fileName) throws
FileNotFoundException, IOException {
 FileReader r = new FileReader(fileName);
 int total = 0;
 while(r.ready()) {
 r.read();
 total++;
 }
 r.close();
 return total;
 }
}

© Vivek Kumar

Question

32

● What is the output of
the following program?

● Answer
o Compilation error!
o Unreachable catch

block
o error: exception

NullPointerException
has already been
caught

public class Main {
 public static void main(String[] args) {
 String s = null;
 try {
 int length = s.length();
 }

 catch (Exception e) {
 System.out.println(“Catch block -1”);
 }
 catch (NullPointerException e) {
 System.out.println(“Catch block -2”);
 }
 }
}

© Vivek Kumar

Some Important Methods in Throwable

33

String toString() Returns a short description of the exception
 String getMessage() Returns the detail description of the exception
void printStackTrace() Prints the stacktrace information on the console

1. public class Andy {

2. public void drinkWater() {
3. getWater();
4. }
5. public void getWater() {
6. try {
7. _water = _wendy.getADrink();//null
8. int volume = _water.getVolume();
9. }
10. catch(NullPointerException e) {
11. e.printStackTrace();
12. }
13. }
14. }

● Output:
 java.lang.NullPointerException
 at Andy.getWater(Andy.java:8)

 at
Andy.drinkWater(Andy.java:3)

© Vivek Kumar

Overriding Methods Having throws (1/3)

34

● If a method in parent
class throws an
exception (either
checked or
unchecked), then
overridden
implementation of that
method in child class is
not required to throw
that exception
o Although throwing that

same exception in
overridden method won’t
hurt

import java.lang.CloneNotSupportedException;

public class Cloning {

 public void createClone()
 throws CloneNotSupportedException {

 System.out.println(“Clone created”);
 }
}

public class Human extends Cloning {

 @Override
 public void createClone()
 {

 System.out.println(“Cloning not allowed”);
 }
}

© Vivek Kumar

Overriding Methods Having throws (2/3)

35

● However, the reverse
may/may not work

● Case-1: Overridden
method throws
checked exception
but not the actual
method in parent class
o Compilation error

import java.lang.CloneNotSupportedException;

public class Cloning {

 public void createClone()
 {

 System.out.println(“Clone created”);
 }
}

public class Human extends Cloning {

 @Override
 public void createClone()
 throws CloneNotSupportedException {

 System.out.println(“Cloning not allowed”);
 }
}

© Vivek Kumar

Overriding Methods Having throws (3/3)

36

● However, the reverse
may/may not work

● Case-2: Overridden
method throws
unchecked exception
but not the actual
method in parent class
o This works fine

import java.lang.CloneNotSupportedException;

public class Cloning {

 public void createClone()
 {

 System.out.println(“Clone created”);
 }
}

public class Human extends Cloning {

 @Override
 public void createClone()
 throws RuntimeException {

 System.out.println(“Cloning not allowed”);
 }
}

© Vivek Kumar

Defining Your Own Exception (1/4)

37

● You can define and throw
your own specialized
exceptions
o throw new NoWaterException(…);

● Useful for responding to
special cases, not covered
by pre-defined exceptions

● The class Exception has
a method
getMessage().The String
passed to super is printed
to the output window for
debugging when
getMessage() is called by
the user

public class NoWaterException extends Exception {
 public NoWaterException(String message) {
 super(message);
 }
}
public class Andy {
 public void drinkWater() {
 try {
 getWater();
 }
 catch(NoWaterException e) {
 System.out.println(e.getMessage());
 }
 }
 public void getWater() throws NoWaterException {
 _water = _wendy.getADrink();
 if(_water == null) {
 this.fire(_wendy);
 throw new NoWaterException(“NO Water”);
 }
 }
}

© Vivek Kumar

Defining Your Own Exception (2/4)

38

● Every method that
throws Exceptions that
are not subclasses of
RuntimeException
must declare what
exceptions it throws in
method declaration

● getWater() is throwing
the exception, hence it
must declare that using
the “throws” on method
declaration

public class NoWaterException extends Exception {
 public NoWaterException(String message) {
 super(message);
 }
}
public class Andy {
 public void drinkWater() {
 try {
 getWater();
 }
 catch(NoWaterException e) {
 System.out.println(e.getMessage());
 }
 }
 public void getWater() throws NoWaterException {
 _water = _wendy.getADrink();
 if(_water == null) {
 this.fire(_wendy);
 throw new NoWaterException(“NO Water”);
 }
 }
}

© Vivek Kumar

Defining Your Own Exception (3/4)

39

● Any method that directly
or indirectly calls
getWater() must
declare that it can
generate
NoWaterException
using throws keyword
o Not doing this generate

compilation error
o error: unreported

exception
NoWaterException;
must be caught or
declared to be thrown

public class NoWaterException extends Exception {
 public NoWaterException(String message) {
 super(message);
 }
}
public class Andy {
 public void drinkWater() throws NoWaterException {
 getWater();
 }
 public void getWater() throws NoWaterException {
 _water = _wendy.getADrink();
 if(_water == null) {
 this.fire(_wendy);
 throw new NoWaterException(“NO Water”);
 }
 }
 public static void main(String[] args) {
 Andy obj = new Andy();
 obj.drinkWater();
 }
}

© Vivek Kumar

Defining Your Own Exception (4/4)

40

● This works fine, although
we are not catching the
NoWaterException
anywhere that is again
not a defensive
programming!
o Running this program with

_water = null
Exception in thread "main”
NoWaterException: NO Water
at Andy.getWater(Andy.java:14)
at Andy.drinkWater(Andy.java:8)
at Andy.main(Andy.java:20)

1.public class NoWaterException extends Exception {
2. public NoWaterException(String message) {
3. super(message);
4. }
5.}
6.public class Andy {
7. public void drinkWater() throws NoWaterException {
8. getWater();
9. }
10. public void getWater() throws NoWaterException {
11. _water = _wendy.getADrink();
12. if(_water == null) {
13. this.fire(_wendy);
14. throw new NoWaterException(“NO Water”);
15. }
16. }
17. public static void main(String[] args)
18. throws NoWaterException {
19. Andy obj = new Andy();
20. obj.drinkWater();
21. }
22.}

© Vivek Kumar

Pros and Cons of Exception

41

● Pros
o Cleaner code: rather than returning a boolean up chain of calls to

check for exceptional cases, throw an exception!
o Use return value for meaningful data, not error checking
o Factor out error-checking code into one class, so it can be reused

● Cons
o Throwing exceptions requires extra computation
o Can become messy if not used economically
o Can accidentally cover up serious exceptions, such as

NullPointerException by catching them

Next Lecture

42

● Assertions
● Java collection framework

© Vivek Kumar

