
Lecture 11: Collection Framework
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE201: Advanced Programming

© Vivek Kumar

Last Lecture
● We are skipping recap today as next lecture (midsem

review) will anyway go through all the concepts once
again

© Vivek Kumar

Today’s Lecture
● Assertions (Defensive Programming)
● Collections framework in Java

© Vivek Kumar

Assertions

3

● assertion: A statement that is either true or false
Examples:
o Java was created in 1995.
o The sky is purple.
o 23 is a prime number.
o 10 is greater than 20.
o x divided by 2 equals 7. (depends on the value of x)

● An assertion might be false ("The sky is purple" above),
but it is still an assertion because it is a true/false
statement

Copyright 2008 by Pearson Education

4

Declaring Assertions
An assertion is declared using the new Java
keyword assert as follows:

assert assertion; or
assert assertion : detailMessage;

where assertion is a Boolean expression and
detailMessage is a primitive-type or an Object
value

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved

Executing Assertion (1/3)

5

● When an assertion
statement is executed,
Java evaluates the
assertion. If it is false,
an AssertionError
will be thrown

public class AssertionDemo {
 public static void main(String[] args) {
 int i; int sum = 0;
 for (i = 0; i < 10; i++) {
 sum += i;
 }
 assert i == 10;
 assert sum > 10 && sum < 5 * 10 : "sum is " + sum;
 }
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved

Executing Assertion (2/3)

6

● By default, the assertions
are disabled at runtime as
they are costly
o Constant check of the

condition inside assert
statement

● To enable use the following
command line switch
java –ea AssertionDemo
 OR
java –enableassertions
AssertionDemo

public class AssertionDemo {
 public static void main(String[] args) {
 int i; int sum = 0;
 for (i = 0; i < 10; i++) {
 sum += i;
 }
 assert i == 10;
 assert sum > 10 && sum < 5 * 10 : "sum is " + sum;
 }
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved

Executing Assertion (3/3)

7

● Let’s try to generate the
assertion failure in this
program
o Change “==“ to “!=“
o Output:

Exception in thread "main" java.lang.AssertionError

at AssertionDemo.main(AssertionDemo.java:7)

● AssertionError extends
Error and you cannot write
a try/catch block to catch
this. The program will
definitely terminate with the
complete stack dump

public class AssertionDemo {
 public static void main(String[] args) {
 int i; int sum = 0;
 for (i = 0; i < 10; i++) {
 sum += i;
 }
 // deliberately changed to generate assertion failure
 assert i != 10;
 assert sum > 10 && sum < 5 * 10 : "sum is " + sum;
 }
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved

Assertions or Exception Handling?

8

● Assertion should not be used to replace exception
handling
o Exception handling deals with unusual circumstances whereas

assertions are to assure the correctness of the program
o Exception handling addresses robustness and assertion

addresses correctness
● Similar to exceptions, assertions are also checked at

runtime but unlike exceptions it can be turned on or off (for
entire execution)

● Use assertions to reaffirm assumptions to assure
correctness of the program

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved

Let’s change gears…

Collection Framework

© Vivek Kumar

Note
● Remaining slides will use all the concepts that you have

learned so far in this course

© Vivek Kumar

● Has fixed size (length)
o Can you do it programmatically?
o Memory wastage?

● Deleting an element
o Can you do it programmatically?

● Comparing two arrays
o Can you use “==“ or equals()?

● Can you assign one array to
other?
o int a[], b[]; a=b

How is your Experience using Arrays?

11
© Vivek Kumar

12

● Unified architecture for representing and manipulating
collections
o A collection (sometimes called a container) is simply an object that groups multiple

elements into a single unit
o Very useful

§ store, retrieve and manipulate data
§ transmit data from one method to another

● Collection framework contains three things
o Interfaces
o Implementations
o Algorithms

● This group of collection classes/interfaces are referred to as
Java Collection Framework (JCF)
o The classes in JCF are found in package “java.util”.

Java Collection Framework

© Vivek Kumar

13

Collection Hierarchy

© Vivek Kumar

14

Interface Can Extend Another Interface (1/2)

© Vivek Kumar

public class Airplane
 implements Flyable {
 ...
 public void move_left() {
 // move left
 }
 public void move_right() {
 // move right
 }
 public void fly_up() {
 // fly up
 }
 public void fly_down() {
 // fly down
 }
}

public interface Flyable {
 public void fly_up();
 public void fly_down();
 public void move_left();
 public void move_right();
}

public class Car
 implements Moveable {
 ...
 public void move_left() {
 // move left
 }
 public void move_right() {
 // move right
 }
 // more methods elided
}

public interface Moveable {
 public void move_left();
 public void move_right();
}

15

Interface Can Extend Another Interface (2/2)

© Vivek Kumar

public class Car
 implements Moveable {
 ...
 public void move_left() {
 // move left
 }
 public void move_right() {
 // move right
 }
 // more methods elided
}

public class Airplane
 implements Flyable {
 ...
 public void move_left() {
 // move left
 }
 public void move_right() {
 // move right
 }
 public void fly_up() {
 // fly up
 }
 public void fly_down() {
 // fly down
 }
}

public interface Moveable {
 public void move_left();
 public void move_right();
}

public interface Flyable
 extends Moveable {
 public void fly_up();
 public void fly_down();
}

Car Airplane

Moveable

Flyable

16

● Just one method in
this interface

● Objects of all classes
that implements this
interface can be the
target of foreach
statement

● Iterators allow iterating
over the entire
collection. It also
allows element
removal from
collection during
iteration

Iterable Interface Source Code
package java.lang;
public interface Iterable<E> {
 Iterator<E> iterator();
}

© Vivek Kumar

17

Iterator Interface
● Defines three fundamental methods

o Object next()
o boolean hasNext()
o void remove()

● These three methods provide access to the
contents of the collection

● An Iterator knows position within collection
● Each call to next() “reads” an element from

the collection
o Then you can use it or remove it

© Vivek Kumar

18

Iterator Position

© Vivek Kumar

19

● Defines fundamental
methods that are
enough to define the
basic behavior of a
collection

● Inherit the method
from Iterable
interface

Collection Interface Source Code
package java.util;
public interface Collection<E> extends Iterable<E>
{
 int size();
 boolean isEmpty();
 contains(Object o);
 boolean add(E e);
 boolean remove(Object o);
 equals(Object o);

}

© Vivek Kumar

20

Example - SimpleCollection

public class SimpleCollection {
 public static void main(String[] args) {
 Collection c = new ArrayList();
 for (int i=0; i < 10; i++) {
 c.add(i);
 }
 Iterator iter = c.iterator();
 while (iter.hasNext())
 System.out.println(iter.next());
 }
}

© Vivek Kumar

21

● Recall in Java, arrays have fixed length
o Cannot add / remove / insert elements

● Lists are like resizable arrays
o Allow add / remove / insert of elements

● List interface is defined through the ArrayList<E> class
o Where E is the type of the list, e.g. String or Integer

List Interface

© Vivek Kumar

22

● Observe that List
interface has two
different iterators
o Iterator<E>

iterator();
o ListIterator<E>

listIterator();

List Interface Source Code
package java.util;
public interface List<E> extends Collection<E> {
 E get(int index);
 E set(int index);
 void add(int index, E element);
 E remove(int index);
 ListIterator<E> listIterator();

}

© Vivek Kumar

23

ListIterator Interface
● Extends the Iterator interface
● Defines three fundamental methods

o void add(Object o) - before current position
o boolean hasPrevious()
o Object previous()

● The addition of these three methods defines the basic behavior of an
ordered list

● Iterator v/s ListIterator
o Unlike Iterator, a ListIterator knows position within list (obtain indexes)
o Iterator allows traversal only in forward direction but ListIterator allows list traversal

in both forward and backward directions
o ListIterator can be used to traverse a List only

© Vivek Kumar

24

List Implementations
● ArrayList

o low cost random access (at an index)
o high cost insert and delete
o array that resizes if need be

● LinkedList
o sequential access but high cost random access (at an index)
o low cost insert and delete

© Vivek Kumar

25

ArrayList overview
● Constant time positional access (it’s an array)
● One tuning parameter, the initial capacity to constructor
● Constructors

o ArrayList()
§ Build an empty ArrayList (of initial size 10)

o ArrayList(Collection c)
§ Build an ArrayList initialized with the elements of the collection c

o ArrayList(int initialCapacity)
§ Build with the specified initial capacity

© Vivek Kumar

26

ArrayList Methods
● The indexed get and set methods of the List interface

are appropriate to use since ArrayLists are backed by
an array
o Object get(int index)
o Object set(int index, Object element)
o May throw IndexOutOfBoundsException

● Indexed add and remove are provided, but can be
costly if used frequently
o void add(int index, Object element)
o Object remove(int index)
o May throw IndexOutOfBoundsException

● May want to resize in one shot if adding many
elements
o void ensureCapacity(int minCapacity)

● ArrayList allows adding duplicate elements

© Vivek Kumar

27

How ArrayList Store Objects in Heap?
● ArrayList stores objects

in an Object array
o private Object[] elementData;

● Resizable array
implementation

public boolean add(E e) {
 ensureCapacity(size+1);
 elementData[size++] = e;
 return true;
}

// Increase the capacity if necessary to ensure that it can
// hold atleast the minCapacity number of elements
public void ensureCapacity(int minCapacity) {

 int oldCapacity = elementData.length;
 if(minCapacity > oldCapacity) {

 int newCapacity =
 elementData = Arrays.copyOf(elementData, newCapacity);
 }
}

© Vivek Kumar

28

LinkedList Overview (1/2)
● Stores each element in a node
● Each node stores a link to the next and previous nodes

o Doubly linked list

● Insertion and removal are inexpensive
o just update the links in the surrounding nodes

● Linear traversal is inexpensive
● Random access is expensive

o Start from beginning or end and traverse each node while counting

© Vivek Kumar

29

LinkedList Overview (2/2)
● Constructors

o LinkedList()
§ Build an empty LinkedList

o LinkedList(Collection c)
§ Construct a list containing the elements of the specified collection, in the order

they are returned by the collection's iterator

© Vivek Kumar

30

LinkedList Methods
● ListIterator knows about position

o use add() to add at a position
o use remove() to remove at a position

● Few other methods
o void addFirst(Object o), void addLast(Object

o)
o Object getFirst(), Object getLast()
o Object removeFirst(), Object removeLast()

© Vivek Kumar

31

Example: LinkedList
import java.util.*;
public class Book {
 private String name;
 private int pages;
 public Book(int p, String s) { }
 @Override
 public String toString() { }
 public static void main(String[] args) {
 List<Book> list = new LinkedList<Book>();

 list.add(new Book(100, “ABC”));
 list.add(new Book(200, “DEF”));
 list.add(new Book(300, “GHI”));

 for(Book b:list) {
 System.out.println(b);
 }
 }
}

© Vivek Kumar

32

Sets
● Sets keep unique elements only

o Like lists but no duplicates

● HashSet<E>
o Keeps a set of elements in a hash tables
o The elements are randomly ordered by their hash code

● TreeSet<E>
o Keeps a set of elements in a red-black ordered search tree
o The elements are ordered incrementally

© Vivek Kumar

33

Set Interface
● Same methods as Collection

o different contract - no duplicate entries
§ How?

● Provides an Iterator to step through the
elements in the Set
o No guaranteed order in the basic Set interface

© Vivek Kumar

34

HashSet
● Find and add elements very quickly

o uses hashing

● Hashing uses an array of linked lists
o The hashCode() is used to index into the array
o Then equals() is used to determine if element is

in the (short) list of elements at that index

● No order imposed on elements

© Vivek Kumar

35

TreeSet
● Elements can be inserted in any order

o The TreeSet stores them in order

● Default order is defined by natural order
o Objects implement the Comparable interface
o TreeSet uses compareTo(Object o) to sort

© Vivek Kumar

36

Example: TreeSet
import java.util.*;
public class Book implement Comparable<Book> {
 private String name;
 private int pages;
 public Book(int p, String s) { }
 @Override
 public String toString() { }
 public int compareTo(Book b) {
 if(this.page>b.getpage()) return 1;
 else if(this.page<b.getpage()) return -1;
 else return 0;
 }
 public static void main(String[] args) {
 Set<Book> set = new TreeSet<Book>();

 set.add(new Book(100, “ABC”));
 set.add(new Book(200, “DEF”));
 for(Book b:set) { // you can also use iterator
 System.out.println(b);
 }
 }
}

● The elements in
TreeSet must be of
Comparable type

● You need to add
compareTo in user
defined classes

© Vivek Kumar

37

Maps
● Maps keep unique <key, value> pairs
● HashMap<K, V>

o Keeps a map of elements in a hash table
o The elements are randomly ordered using their hash code

● TreeMap<K, V>
o Keep a set of elements in a red-black ordered search tree
o The elements are ordered incrementally by their key

© Vivek Kumar

38

Map Interface
● Stores unique key/value pairs
● Maps from the key to the value
● Keys are unique

o a single key only appears once in the Map
o a key can map to only one value

● Values do not have to be unique

© Vivek Kumar

39

Example: HashMap

import java.util.*;
public class Book {
 private String name;
 private int pages;
 public Book(int p, String s) { }
 @Override
 public String toString() { }
 public static void main(String[] args) {
 Map<Integer, Book> map = new HashMap<Integer, Book>();

 map.add(1, new Book(100, “ABC”));
 map.add(2, new Book(200, “DEF”));
 for(Map.Entry e:map.entrySet()) {
 System.out.println(e.getKey() + “:” + e.getValue());
 }
 }
}

© Vivek Kumar

40

Next Lecture

© Vivek Kumar

● Mid semester review
o Quick recap of the lectures so far
o To help you in preparation for your mid semester exam

● Quiz-3
o Syllabus: Lectures 08-11

