
Lecture 12: Mid Semester Review
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE201: Advanced Programming



1

This lecture is to 
help you in avoiding 
situations like this...



OOP: Classes and Objects



What is OOP?

3

It is a programming paradigm based on the concept of “objects”, which may contain 
data in the form of fields, often known as attributes; and code, in the form of 
procedures, often known as methods
(Wikipedia) 



Encapsulation
● An encapsulated object can be thought of as a black 

box -- its inner workings are hidden from the client

● The client invokes the interface methods of the object, 
which manages the instance data

Methods

Data

Client

© 2004 Pearson Addison-Wesley. All rights reserved 4



Procedural v/s OOP

5



Classes
● A class can contain data declarations and method 

declarations

int size, weight;
char category; Data declarations

Method declarations

© 2004 Pearson Addison-Wesley. All rights reserved 6



Object Instances
● We can depict the two objects of Dice class as follows:

dice1 5faceValue

dice2 2faceValue

Each object maintains its own faceValue and 
numFaces variable, and thus its own state

numFaces 6

numFaces 9

7



Identifying Classes and Methods
● Classes

o Class represents a 
group of objects 
with similar 
behaviors

o Look for nouns

● Methods
o Verbs

Classes
Customer

HomePage

LoginPage

EmailAccount

Methods
clickLogin

display

enterCredentials

clickOK

validate

© Vivek Kumar



Sequence Diagram: Tracing Object Methods 
and Interactions

9

Class Name

Object lifespan

Method denoted with 
sold arrows 

Reply (return)

Message direction

© Vivek Kumar



Class Relationships



Class Relationships
● When writing a program, need to keep in mind “big 

picture”—how are different classes related to each other?
● Most common class relationships

o Association
o Composition
o Dependency
o Inheritance

© Vivek Kumar



Association Relationship

12

● Class A and class B are 
associated if A “knows about” B, 
but A does not contains 
(instantiate) object of B
o But this is not symmetrical!  B need 

not know about A
● Class A holds a class level 

reference to class B
● Lifetime?

o Objects of class A and B have their 
own lifetime, i.e., they can exist 
without each other

class Project {
 private String name;
 public boolean status() { ... }
 .....
}
// Contractor’s project keep changing
class Contractor { 
 private Project currentProject;
 public Contractor(Project proj) {
  this.currentProject = proj;
 }
 public void setProject(Project proj){
  this.currentProject = proj;
 }
}

© Vivek Kumar



Composition Relationship

13

● Class A contains object of 
class B 
o A instantiate B
o But this is not symmetrical!  B 

need not contain/know-
about A

● Lifetime?
o The death relationship
o Garbage collection of A means 

B also gets garbage collected

class Project {
 private String name;
 public boolean status() { ... }
 .....
}
// Contractor has a fixed project
class Contractor {
 private Project project;
 public Contractor() {
  this.project = new Project(“ABC”);
 }
 public boolean projectCompleted() {
  return project.status();
 }
}

© Vivek Kumar



Dependency Relationship

14

● Neither class A or class B 
contains or know-about each 
other

● Class A depends on class B if A 
cannot carry out its work without 
B
o Need not be symmetrical!  B 

doesn’t depends on A
● Created when class A receives a 

reference to another class B as 
part of a particular operation or 
method

class Product {
 private double price;
 .....
 public double getPrice() { ..... }
}

class Cart {
 private double cartPrice;
 public void addProduct(Product p) {
  cartPrice += p.getPrice();
 }
}

© Vivek Kumar



Interfaces and Polymorphism



Do we need two 
different Racer classes?? How about one Racer 

class with different 
methods?

Any similarity?

Motivation



● Group similar capabilities/function of 
different classes together

● Interfaces can only declare methods - not 
define them

● Interfaces are contracts that classes agree 
to

● If classes choose to implement given 
interface, it must define all methods 
declared in interface
o if classes don’t implement one of interface’s 

methods, the compiler raises error

Declaring an Interface

@Override is an annotation – a signal to the compiler (and to 
anyone reading your code)

Interfaces



Interface and 
Polymorphism

public class Race {
    private Racer _dan, _sophia;
    
    public Race(){
        _dan = new Racer();
        _sophia = new Racer();
    }
    public void startRace() {
        _dan.useTransportation(new Car());
        _sophia.useTransportation(new Bike());
    }
}

public class App {
    public App() {
        Race r = new Race();
        r.startRace();
    }
}

public class Racer {
   public Racer() {}

   public void useTransportation(Transporter transport){ 
       transport.move();
   }
}

public class Car implements Transporter {
   public Car() {}
   public void drive() {
      //code elided
   }
   public void move() {
       this.drive();
   }
}

public class Bike implements Transporter {
   public Bike() {}
   public void pedal() {
       //code elided
   }
   public void move() {
       this.pedal();
   }
}

public interface Transporter {
    public void move();
} 18



Inheritance and Polymorphism



Inheritance

20

● In OOP, inheritance is a way of modeling very 
similar classes

● Superclass/parent/base: A class that is 
inherited from

● Subclass/child/derived: A class that inherits 
from another

● A subclass inherits all of its parent’s public 
and protected capabilities

● Inheritance and Interfaces both legislate class’s 
behavior, although in very different ways
o Interfaces allow the compiler to enforce method 

implementation
§ An implementing class will have all capabilities outlined in an 

interface
o Inheritance assures the compiler that all subclasses of a 

superclass will have the superclass’s public/protected
capabilities without having to respecify code – methods are 
inherited



● Adding new methods
● Accessing superclass fields/methods
● Overriding superclass methods
● Polymorphism
● Method resolution

Method resolution

Inheritance and 
Polymorphism



Abstract Class

22

● We declare a method abstract in a superclass when the subclasses 
can’t really re-use any implementation the superclass might provide

● Any class having an abstract method is an abstract class and is 
denoted using abstract keyword

● Abstract classes cannot be instantiated but its constructor must still be 
invoked via super() by a subclass

● Subclass at any level in inheritance hierarchy can make abstract
method concrete by providing implementation

● Abstract class v/s interfaces
o Can define instance variables unlike interfaces
o Can define a mix of concrete and abstract methods, unlike interfaces where 

you cannot have any concrete method
o You can only inherit from one class whereas you can implement multiple 

interfaces



● All concrete subclasses of Car
override by providing a concrete 
implementation for Car’s abstract 
loadPassengers() method

● As usual, method signature must 
match the one that Car declared

Abstract Class and Methods
public class Convertible extends Car{
 @Override
 public void loadPassengers(){
 Passenger p1 = new Passenger();
 p1.sit();
 }
}

public class Sedan extends Car{
   @Override
   public void loadPassengers(){
       Passenger p1 = new Passenger();
       p1.sit();
       Passenger p2 = new Passenger();
       p2.sit();
   }
}

public class Van extends Car{
    @Override
    public void loadPassengers(){
       Passenger p1 = new Passenger();
       p1.sit();
 Passenger p2 = new Passenger();
       p2.sit();
       Passenger p3 = new Passenger();
       p3.sit();
    }
}

Andries van Dam © 2016 9/22/16 

23



Making a Class Immutable
1. Don't provide any methods that modify the object's state.
2. Make all fields private.  (ensure encapsulation)
3. Make all fields final.
4. Ensure exclusive access to any mutable object fields.

o Don't let a client get a reference to a field that is a mutable object (don't 
allow any mutable representation exposure.)

5. Ensure that the class cannot be extended.

24
© Vivek Kumar



25

public class final Mechanics {
    private final String oilType;
 private final int numCylinders;

    public Mechanics(String oil, int cylinders)
    public String getOilType();
 public int getNumCylinders();
}

Mechanics cannot be extended 
as it is declared as final

public class ModifiedMechanics extends Mechanics {
    
  ......
  @Override
public String getOilType(){ 

      return “Rocket Fuel”;
}
@Override
public int getNumCylinders(){return 18;}//Bugatti

}

Immutable Class

© Vivek Kumar



Object Comparison and Copying



The Class Object

27

● The class Object forms the root of the
overall inheritance tree of all Java classes.
o Every class is implicitly a subclass of Object
o No need to explicitly say “extends Object”

● The Object class defines several methods
that become part of every class you write.
For example:
o public String toString()

Returns a text representation of the object,
usually so that it can be printed.

Object

equals
clone

finalize
getClass
hashcode
notify

notifyAll
toString

wait

Cat

...

© Vivek Kumar



The equals Method in Object Class

28

● getClass returns information 
about the type of an object
o Stricter than instanceof;  

subclasses return different 
results

● getClass should be used 
when implementing equals
o Instead of instanceof to check 

for same type, use getClass 
o This will eliminate subclasses 

from being considered for 
equality

o Caution: Must check for null 
before calling getClass 

1. public class Point {
2.    private int x, y;
3.    public Point(int _x, int _y) { ... }
4.    @Override
5.   public boolean equals(Object o1) {
6.     if(o1 != null && getClass() == o1.getClass()) {
7.  Point o = (Point) o1; //type casting
8.        return (x==o.x && y==o.y);
9.  }
10.  else {
11.  return false;
12.  }
13.  }
14. }
15. // subclass of Point
16. class Point3D extends Point {
17.    private int z;
18.  public Point3D(int _z) { ... }
19.  @Override
20.  public boolean equals(Object o1) {
8.      if(o1 != null && getClass() == o1.getClass()) {
9.        Point3D o = (Point3D) o1; //type casting
8.        return (super.equals(o1) && z==o.z);
9.      }
10.      else {
11.        return false;
12.      }   
13.    }
14. }

© Vivek Kumar



Comparable Example
● In this Rectangle 

class, the 
compareTo 
method compares 
the Rectangle 
objects as per 
their area

● You can choose 
your own 
comparison 
algorithm!

29

public class Rectangle implements Comparable<Rectangle> {
 private int sideA, sideB, area;
 public Rectangle (int _a, int _b) { ... }

 @Override
 public int compareTo(Rectangle o) {
 if(area == o.area) return 0;
 else if(area < o.area) return -1;
 else return 1;
 }
}

© Vivek Kumar



Comparator Example

30 / 80

public class RectangleAreaComparator

         implements Comparator<Rectangle> {

 @Override

    public int compare(Rectangle r1, Rectangle r2) {

        return r1.getArea() - r2.getArea();

    }

}

public class RectangleSidesComparator

        implements Comparator<Rectangle> {

 @Override

    public int compare(Rectangle r1, Rectangle r2) {

        if (r1.getSideA() != r2.getSideA()) {

            return r1.getSideA() - r2.getSideA();

        } else {

            return r1.getSideB() - r2.getSideB();

        }

    }

}

● Using Comparators, 
two objects could be 
compared in different 
possible ways

● For creating different 
comparison, 
implement different 
objects of 
Comparator type

© Vivek Kumar



Object Clonning
public class BankAccount implements Cloneable {
   private String name;
   private List<String> transactions;
   ...
   public BankAccount clone() {
      try {              // deep copy
         BankAccount copy = (BankAccount) super.clone();
         copy.transactions = new ArrayList<String>(transactions);
         return copy;
      } catch (CloneNotSupportedException e) {
         return null;   // won't ever happen
      }
   }
}

o Copying the list of transactions (and any other modifiable reference fields) 
produces a deep copy that is independent of the original.



Generics and Collection Framwork



● Our generic cup can 
hold different types of 
liquid 

● In the notation Cup<T>:
o T = Coffee
o T = Tea
o T = Milk
o T = Soup
o ……

Cup == Generic Container

Generic Programming

33
© Vivek Kumar



● This is usage of a generic 
class with multiple fields

● Restrictions
o Type parameters cannot 

be instantiated with 
primate types

o Instantiating type variables 
is not allowed

o Generic array creation is 
not allowed

o Type variables are not 
valid as static field of a 
generic class

o Generic does not supports 
sub typing

Generic Programming

34

public class Pair <T1, T2> {
    private T1 key;
 private T2 value;
 public Pair(T1 _k, T2 _v) {
       key = _k; value = _v;
    }
 public T1 getKey() {  return key; }
 public T2 getValue() { return value; }
}

public class Main {
    public static void main(Sting args[]) {
 MyGenericList<Pair<String, Integer>> db = 
  new MyGenericList<Pair<String, Integer>>();
 db.add(new Pair<String, Integer>(“John”, 2343));
 db.add(new Pair<String, Integer>(“Susane”, 8908));
        ...
 }
}

© Vivek Kumar



Java Collection 
Framework

35

● A collection (sometimes called 
a container) is simply an object 
that groups multiple elements 
into a single unit
o Iterator interface provides 

access to the content of a 
collection

o Collection interface defines 
fundamental methods that are 
enough to define the basic 
behavior of a collection

o Lists are like resizable arrays
§ ArrayList and LinkedList

o Set interface methods are  same 
as Collection interface but it 
does not allow duplicates
§ HashSet and TreeSet

o Maps keep unique <key, value> 
pairs
§ HashMap and TreeMap

© Vivek Kumar



Exception Handling



Basic Exception Handling

37

● Exception handling
o To catch runtime errors
o try / catch / finally block to exception handling
o try/catch blocks could be nested
o Single try could have multiple catch blocks
o Methods can throw exceptions

public class Andy {    
 public void getWater() {
 try {
            _water = _wendy.getADrink();
 int volume = _water.getVolume();
        }
 catch(NullPointerException e) {
            this.fire(_wendy);

            try {
 _water = johny.getADrink();
 int volume = _water.getVolume();
 }
 catch(NullPointerException e) {
                this.fire(johny);
            }
        }
 }
}

public class Andy {
    .....
 public void drinkWater() {
        try {
            getWater();
        }
        catch(NullPointerException e) {
            System.out.println(e.getMessage());
        }
    }
 public void getWater() {
        try {
            _water = _wendy.getADrink();
 int volume = _water.getVolume();
        }
        catch(NullPointerException e) {
 this.fire(_wendy);
            System.out.println(“Wendy is fired!”);
 throw new NullPointerException(“NO Water”);
        }
    }
}

© Vivek Kumar



Advanced Exception Handling

38

● Exceptions are classes that extends Throwable
o Checked exceptions

§ Those that must be handled somehow (e.g., IOException)
o Unchecked exceptions

§ Those whose handling isn’t mandatory (e.g., RuntimeExceptions)
• You should not attempt to handle exceptions from subclass of Error

● Golden rules for using “throws” in method declaration
o Any method that calls another method capable of generating 

checked exceptions, then the caller method must either try/catch the 
exception or declare the list of those checked exceptions using 
“throws” statement

o In inheritance, if an overridden method in child class throws 
checked exceptions, then declaration of this method in parent 
should also declare those checked exceptions using throws

© Vivek Kumar



All the best for your exam !!

40

● Exam syllabus
o Lectures 01-11


