
Lecture 13: I/O Streams
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE201: Advanced Programming

Today’s Lecture
● I/O Streams
● Object serialization and deserialization

 Acknowledgements: Oracle Java doc + javatpoint.com

2

● Stream is a sequence of
data
o Flows in/out the program

to/from an external source
such as file, network,
console, etc.

● Similar to a stream of
flowing water…

● Program uses input
stream to read data from a
source, one at a time

● Program uses output
stream to write data to a
destination, one at a time

I/O Streams

© Vivek Kumar

Streams v/s File Handling

3

● Stream is a continuous flow of data
o Streams don’t allow you to move back and forth unlike File

● Streams allows you handle the data the same way
irrespective of the location of data (e.g., hard disk, network
etc.)
o You can have the same code to “stream” the data from a file and

from the network!

© Vivek Kumar

Types of Streams

4

● Two types of streams
o Byte stream
o Character stream

● Byte stream
o Operates upon stream of “byte”

(8-bit)
● Character stream

o Operates upon stream of
“character” Unicode (16-bit)

o Unicode is a computing industry
standard designed to
consistently and uniquely
encode characters used in
written languages throughout
the world

o The Unicode standard uses
hexadecimal to express a
character
§ JVM is platform independent!

java.io Package

5

● Reading
open a stream
while more information

read information
close the stream

●Writing
open a stream
while more information

write information
close the stream

Byte Stream Hierarchy

6

● OutputStream
o This is the abstract

class
o Parent class of all

classes representing an
output stream of bytes

o An output stream
accepts output bytes
and sends them to
some sink

● InputStream
o This is the abstract

class
o Parent class of all

classes representing an
input stream of bytes

InputStream

FileInputStream

ByteArrayInputStream

FilterInputStream

PipedInputStream

ObjectInputStream

DataInputStream

BufferedInputStream

LineNumberInputStream

SequenceInputStream

PushbackInputStream

OutputStream

FileOutputStream

ByteArrayOutputStream

FilterOutputStream

PipedOutputStream

ObjectOutputStream

DataOutputStream

BufferedOutputStream

PrintStream

© Vivek Kumar

Byte Streams in System Class

7

● In java, 3 streams are created for

us automatically. All these streams

are attached with console
o System.out: standard output

stream

o System.in: standard input stream

o System.err: standard error stream

public final class System {

 public static final InputStream in;

 public static final PrintStream out;

 public static final PrintStream err;

}

public static void main(String args[]) {
 Scanner in = new Scanner(System.in); //java.lang
 // Scanner class implements iterator
 while (in.hasNext()) {

System.out.println(in.next());
}

 in.close();
}

© Vivek Kumar

Byte Stream Example

8

● InputStream
o read() – read the next byte

of data from the input stream
o close() – close input stream

● OutputStream
o write(int) – write a byte to

current output stream
o close() – close output

stream
● Byte stream is used for low-

level I/O, e.g., processing
binary files

public static void main(String args[])
 throws IOException
{
 FileInputStream in = null;
 FileOutputStream out = null;
 try {
 // both constr. throws FileNotFoundException

in = new FileInputStream("input.txt");
out = new FileOutputStream("output.txt");
int c;
while ((c = in.read()) != -1) { // IOException

out.write(c); // IOException
}

} finally {
if (in != null)

in.close(); // IOException
if (out != null)

out.close(); // IOException
}

}
© Vivek Kumar

Character Stream Hierarchy

9

● All character stream classes are subclasses of Reader
and Writer class

● Used for processing text files (character by character)

Reader

Writer

Object

 PrintWriter

BufferedWriter

FileReader

FileWriter

 InputStreamReader

BufferedReader

 OutputStreamWriter

Character Stream Example

10

● This example is very similar to
the byte stream I/O

● In terms of coding, the difference
is in using FileReader and
FileWriter for input and output

● Note that “int” type variable is
used in both these examples to
read and write. Although
internally they are working
differently:
o In byte stream example, the “int”

variable holds a byte value in last
8 bits

o In this example, the “int” variable
holds character value in its last 16
bits

public static void main(String args[])
 throws IOException
{
 FileReader in = null;
 FileWriter out = null;
 try {
 // both constr. throws FileNotFoundException

in = new FileReader("input.txt");
 // throws IOException

out = new FileWriter("output.txt");
int c;
while ((c = in.read()) != -1) { // IOException

out.write(c); // IOException
}

}finally {
if (in != null)

in.close(); // IOException
if (out != null)

out.close(); // IOException
}

}
© Vivek Kumar

Buffered Streams (1/2)

11

●Combine streams into chains to
achieve more advanced input
and output operations

●Reading character by character
from a file is slow
●Faster to read a larger block of

data from the disk and then
iterate through that block byte by
byte afterwards

●The code on the left does input
and output one line at a time
o Unlike BufferedWriter,
PrintWriter swallows exceptions
and provide methods such as
println(), etc.

public static void main(String args[])
 throws IOException
{
 BufferedReader in = null;
 PrintWriter out = null;
 try {

in = new BufferedReader(new
 FileReader("input.txt"));

out = new PrintWriter(new
 FileWriter("output.txt"));

String l;
while ((l = in.readLine()) != null){ //IOException

out.println(l); // does not throw IOException
}

}finally {
if (in != null)

in.close(); // IOException
if (out != null)

out.close(); // IOException
}

}
© Vivek Kumar

Buffered Streams (2/2)

12

●Here we are combining three
classes for breaking input into
tokens:
o Scanner
o BufferedReader
o FileReader

●BufferedReader will read one
line at a time and Scanner will
be able to parse this line by
white space separated tokens

public static void main(String args[])
 throws IOException
{
 Scanner in = null;
 PrintWriter out = null;
 try {

in = new Scanner(new BufferedReader(new
 FileReader("input.txt")));

out = new PrintWriter(new
 FileWriter("output.txt"));

while (in.hasNext()) {
out.println(in.next());

}
}finally {

if (in != null)
in.close();

if (out != null)
out.close();

}
}

© Vivek Kumar

Serialization and Deserialization
● Serialization in Java is a

mechanism of writing the state
of an object into a byte stream
o Note: it’s the object state that is

recorded but not the actual class
definition (“class file”)

● The reverse operation is called
deserialization

● Some usage
o Storing live objects in a file
o Hibernating applications
o Moving object state over the

network (marshaling)
15

© Vivek Kumar

java.io.Serializable Interface
 package java.io;

 public interface Serializable { /*empty*/ }

● Must be implemented by the class to be serialized
● This is a tag/marker interface similar to Cloneable

interface
o Hint to JVM !

16
© Vivek Kumar

17

1. import java.io.*;
2.
3. class Manager implements Serializable {
4. private String name;
5. public Manager(String n) { }
6. }

7. public class Main {
8. public static void serialize()
9. throws IOException {
10. Manager s1 = new Manager("Amy");
11. ObjectOutputStream out = null;
12. try {
13. out = new ObjectOutputStream (
14. new FileOutputStream("out.txt"));
15. out.writeObject(s1);
16. } finally {
17. out.close();
18. }
19. }
20.
/* Continued on RHS window */

Example: Serializing and Deserializing
/* Continued from LHS window */

21. public static void deserialize()
22. throws IOException, ClassNotFoundException {
23. ObjectInputStream in = null;
24. try {
25. in = new ObjectInputStream (
26. new FileInputStream("out.txt"));
27. Manager s1 = (Manager) in.readObject();
29. } finally {
30. in.close();
31. }
32. }
33.
34. public static void main(String[] args)
35. throws IOException,ClassNotFoundException {
36.
37. serialize();
39. deserialize();
40. }
41. } /* End of Main class */

© Vivek Kumar

Suppose you have a Client.java that only has the above
deserializes() method. Compilation of Client.java will generate
two class files Client.class and Manager.class. If you try running
“java Client” without Manager.class in its classpath then
ClassNotFoundException will be thrown at Line 27 above.

Rules for Serializing (1/3)
● This program compiles

fine but will generate
NotSerializableException

● All fields of Manager class
should either be primitive
type or serializable objects
o Address class should also

implement Serializable
interface

18

import java.io.*;
class Address {
 private String city;
 public Address(String c) { }
}
class Manager implements Serializable {
 private String name;
 private Address addr;
 public Manager(String n, String city) { }
}
public class Main {
 public static void serialize() throws IOException {
 Manager s1 = new Manager("Amy”, “Delhi”);
 ObjectOutputStream out = null;

try {
 out = new ObjectOutputStream (

new FileOutputStream("out.txt"));
out.writeObject(s1);

 } finally {
out.close();

}
}

}

© Vivek Kumar

Rules for Serializing (2/3)
● This program compiles fine

but will generate
InvalidClassException while
typecasting the object to
Manager type during
deserialization

● Two ways to fix this issue:
1. Provide a default constructor

in Employee
2. Or, implement Serializable in

Employee class (superclass)
§ This is obviously the safer

and easier choice
§ With this change, its not

required in the Manager (or
any subclass) to mention
implements Serializable

19

import java.io.*;
class Employee {
 private String address;
 public Employee(String a) { }
}
class Manager extends Employee
 implements Serializable {
 private String name;
 public Manager(String n, String city) { }
}
public class Main {
 public static void serialize() throws IOException {
 Manager s1 = new Manager("Amy”, “Delhi”);
 ObjectOutputStream out = null;

try {
 out = new ObjectOutputStream (

new FileOutputStream("out.txt"));
out.writeObject(s1);

 } finally {
out.close();

}
}

}

© Vivek Kumar

Rules for Serializing (3/3)
● There is no point in serializing static field members in a

class
o Static fields do not represents object state but they represent class

state
§ Recall, static variables are accessed using class name and not with

objects of the class
o There will not be any compilation/runtime issue, although the value

serialized will not make any sense as it can always be updated
later in the class

● transient keyword in Java
o If you don’t want any field to be serialized then mark that as

“transient”
20

© Vivek Kumar

serialVersionUID in Serialization (1/2)
● What happens when we compile the programs in previous

slides by enabling warning?
 $ javac –Xlint Main.java

 Main.java:3: warning: [serial] serializable class Manager has no definition of
 serialVersionUID

21
© Vivek Kumar

serialVersionUID in Serialization (2/2)
● JVM generates a unique serialVersionUID to each

class implementing Serializable interface
 ANY-ACCESS-MODIFIER static final long serialVersionUID = 42L;

● Its always advisable to declare this variable in each
serializable class with your own number of choice

● Helpful in verifying if the object being deserialized is of the
same type of the specified class
o The class declaration might have got updated (e.g. added new

fields) after serialization and now deserializing the object will
generate InvalidClassException

22
© Vivek Kumar

Where are we as of now
● CSE201 Post Conditions

1. Students are able to demonstrate the knowledge of basic
principles of Object Oriented Programming such as
encapsulation (classes and objects), interfaces,
polymorphism and inheritance; by implementing programs
ranging over few hundreds lines of code

2. Implement basic event driven programming, exception
handling, and threading
§ Already covered little bit of event driven programming in

refresher module (Day 3) but we will see more
3. Students are able to analyze the problem in terms of use

cases and create object oriented design for it. Students
are able to present the design in UML
§ Already covered little bit of UML but we will see more

4. Students are able to select and use a few key design
pattern to solve a given problem in hand

5. Students are able to use common tools for testing (e.g.,
JUnit), debugging, and source code control as an integral
part of program development
§ Will turn green by end of this week

Next Lecture
● Unit testing using JUnit
● Inner classes
● Assignment-6 will be announced tomorrow evening

o Extension of Assignment-5

