CSE201: Advanced Programming

Lecture 14:
Unit Testing and Inner Classes

Vivek Kumar
Computer Science and Engineering
I1IT Delhi
vivekk@iiitd.ac.in

Today’s Lecture

® Unit testing with JUnit
® |nner classes

Bugs and Testing

® Software reliability: Probability that a software system will not
cause failure under specified conditions.

o Measured by uptime, MTTF (mean time till failure), crash data.

® Bugs are inevitable in any complex software system.
o Industry estimates: 10-50 bugs per 1000 lines of code.
o Abug can be visible or can hide in your code until much later.

® Testing: A systematic attempt to reveal errors.
o Failed test: an error was demonstrated.
o Passed test: no error was found (for this particular situation)

© Vivek Kumar

Manual Testing v/s Automated Testing

Executing a test cases manually without any tool
support is known as manual testing

Time-consuming and tedious - Since test cases are
executed by human resources, it is very slow and
tedious

Huge investment in human resources - As test cases
need to be executed manually, more testers are required
in manual testing

Less reliable - Manual testing is less reliable, as it has to
account for human errors

Non-programmable - No programming can be done to
write sophisticated tests to fetch hidden information

Source: https://www.tutorialspoint.com/junit/junit_overview.htm

Taking tool support and executing the test cases by using
an automation tool is known as automation testing

Fast - Automation runs test cases significantly faster
than human resources

Less investment in human resources - Test cases are
executed using automation tools, so less number of
testers are required in automation testing

More reliable - Automation tests are precise and
reliable.

Programmable - Testers can program sophisticated tests
to bring out hidden information

JUnit: Java Unit Testing Framework

The Java library JUnit helps us to easily
perform automated unit testing

The basic idea:

o Foragiven class Foo, create another class
FooTest to test it, containing various "test

case" methods to run.
o Each method looks for particular results and
passes / fails

JUnit provides "assert” commands to help
us write tests.

o Theidea: Put assertion calls in your test
methods to check things you expect to be
true. If they aren't, the test will fail

© Vivek Kumar

Sample JUnit Test

/* The class method to be tested */
public class Sum {
private int varl, var2;
public Sum(int v1, int v2) {varl=vl; var2=v2;}
public int sum () {
return varl + var2;
}

/* Junit test class */

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class MyTest {

@Test

public void testSum() {
Sum mySum = new Sum(1, 1);
int sum = mySum.sum();
assertEquals(2, sum);

/* Junit test runner class */

import org.junit.runner.JUnitCore;
import org.junit.runner.Result;
import org.junit.runner.notification.Failure;

public class TestRunner {
public static void main(String[] args) {
Result result= JUnitCore.runClasses(MyTest.class);
for (Failure failure : result.getFailures()) {
System.out.println(failure.toString());
}
System.out.println(result.wasSuccessful());
}
}

static import allows us to access the static
members of a class directly without
specifying the class name

$ javac -cp .:./path_to/junit-
4.10.jar Sum.java MyTest.java
TestRunner. java

$ %ava —cg .:./path_to/junit-
4.10.7jar TestRunner

© Vivek Kumar

JUnit Assertion Methods

assertTrue (test) fails if the boolean testis false
assertFalse (test) fails if the boolean test is t rue
assertEquals (expected, actual) fails if the values are not equal
assertSame (expected, actual) fails if the values are not the same (by ==
assertNotSame (expected, actual) | failsif the values are the same (by ==
assertNull (value) fails if the given value is not null
assertNotNull (value) fails if the given value is null

fail() causes current test to immediately fail

® Each method can also be passed a string to display if it fails:
e e.g. assertEquals("message", expected, actual)
o Why is there no pass method?

® Detailed description: https://junit.org/junit4/javadoc/4.8/org/junit/Assert.html

What is Wrong?

/* The class method to be tested */
public class Sum {
private int varl, var2;
public Sum(int v1, int v2) {varl=vl; var2=v2;}
public void incr () {
varl++; var2++;
}

}

/* Junit test class */
import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class MyTest {

@Test

public void testIncr() {
Sum mySum = new Sum(1l, 1);
mySum.incr();
Sum expected = new Sum(2, 2);
assertEquals(expected, mySum);

}

}

® \We are passing two objects
of Sum type into the
testIncr‘(% method where
the assertEquals checks
for equality

o Missing equals() method in
Sum !

o No compilation/runtime error
but test will fail

© Vivek Kumar

What’s Still Wrong?

/* The class method to be tested */
public class Sum {
private int varl, var2;
public Sum(int v1, int v2) {varl=vl; var2=v2;}
public void incr () {
varl++; var2++;

}

@Override
public boolean equals(Object o) {
if(o!=null && getClass()==o0.getClass()) {
Sum s = (Sum) o;
return ((varl==s.varl)&&(var2==s.var2));

}

return false;

/* Junit test class */
import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class MyTest {

@Test
public void testIncr() {
Sum mySum = new Sum(1, 1);
mySum.incr();
Sum expected = new Sum(3, 3);
assertEquals(expected, mySum); //should fail

testincr(MyTest):
expected:<Sum@2e817b38> but
was:<Sum@c4437c4>

® Missing toString()
method!!

© Vivek Kumar

The Correct Version

/* The class method to be tested */
public class Sum {
private int varl, var2;
public Sum(int v1, int v2) {varl=vl; var2=v2;}
public void incr () {
varl++; var2++;

}

@Override
public boolean equals(Object o) {
if(o!=null && getClass()==0.getClass()) {
Sum s = (Sum) o;
return ((varl==s.varl)&&(var2==s.var));

}

return false;
}
@0override

public String toString() {
return "("+Integer.toString(varl)+",”
+Integer.toString(var2)+")";

/* Junit test class */
import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class MyTest {

@Test
public void testlIncr() {
Sum mySum = new Sum(1, 1);
mySum.incr();
Sum expected = new Sum(3, 3);
assertEquals(expected, mySum); //should fail

}

testIncr(MyTest):
expected:<(3,3)> but was:<(2,2)>

Note: JUnit tests should be
independent to each other as
Junit can run them in any order
by using multithreading

10

© Vivek Kumar

Tests With a Timeout

@Test(timeout = 5000)
public void name() { ... }

o The above method will be considered a failure if it doesn't finish
running within 5000 ms

private static final int TIMEOUT = 2000;

@Test(timeout = TIMEOUT)
public void name() { ... }

o Times out / fails after 2000 ms

Testing for Exceptions

@Test(expected = ExceptionType.class)
public void name() {

}

o Will pass if it does throw the given exception.
= |f the exception is not thrown, the test fails
= Use this to test for expected errors

@Test(expected = ArrayIndexOutOfBoundsException.class)
public void testBadIndex() {
ArrayIntlList list = new ArrayIntList();
list.get(4); // should fail

12

Setup and Teardown

@Before

public void name () { ... }
@QAfter

public void name () { ... }

® Methods to run before/after each test case method is called

@BeforeClass

public static void name() { ... }
@QAfterClass

public static void name() { ... }

® Methods to run once before/after the entire test class runs

13

JUnit Test Suites

/* Junit testcase class-1 */
import org.junit.Test;
import static org.junit.Assert.assertEquals;
public class MyTestl {
@Test
public void testSum() {
Sum mySum = new Sum(1, 1);
int sum = mySum.sum();
assertEquals(2, sum);

/* Junit test suite class */

import org.junit.runner.RunWith;
import org.junit.runners.Suite;

@RunWith(Suite.class)

@Suite.SuiteClasses({
MyTestl.class,
MyTest2.class

1))

public class TestSuite { }

/* Junit testcase class-2 */
import org.junit.Test;
import static org.junit.Assert.assertEquals;
public class MyTest2 {
@Test
public void testIncr() {
Sum mySum = new Sum(1, 1);
mySum.incr();
Sum expected = new Sum(2, 2);
assertEquals(expected, mySum);

© Vive

® Test suite: One class that
runs many JUnit tests

o An easy way to run all of your
app's tests at once

® For this example, the classes Sum
and TestRunner are still the same
(Slide no. 7). Simﬁly replace “MyTest”
in TestRunner with “TestSuite”

k Kumar

Tips for Testing

You cannot test every possible input, parameter value, etc.

o So you must think of a limited set of tests likely to expose bugs.

Think about boundary cases
o positive; zero; negative numbers
o right at the edge of an array or collection's size

Think about empty cases and error cases
o 0, -1, null; an empty list or array

test behavior in combination
o maybe add usually works, but fails after you call remove
o make multiple calls; maybe size fails the second time only

15

Trustworthy Tests

Test one thing at a time per test method
o 10 small tests are much better than 1 test 10x as large

Each test method should have few (likely 1) assert statements
o If you assert many things, the first that fails stops the test
o You won't know whether a later assertion would have failed

Tests should avoid logic.
o minimize if/else, loops, switch, etc

o avoid try/catch
. If it's supposed to throw, use expected= ... if not, let JUnit catch it

Torture tests are okay, but only in addition to simple tests

16

Let’'s change gears...

17

Phone Batteries are Becoming
Non-Removable

® Nowadays most of the
phones are coming with
non removable batteries

Earlier, when there were
removable batteries, we
could easily keep a spare
battery and replace when
the primary one drained!

o Yes, | know we can use a
power bank today!

Non RemovabiéABéttery V. Removable Battery

18

© Vivek Kumar

Observations (1/2)

® |n this example,

GeneralBattery FixedBattery several Nokia phones
Attributes Attributes could use an instance
Methods Methods of the same
/ \ l GeneralBattery class
® However, our class
NokiaA NokiaB SamsungGalaxy Samsu ngGalaxy uses
myGeneralBattery myGeneralBattery myFixedBattery an instance Of
Methods Methods Methods FixedBatte ry

o FixedBattery will never
be instantiated outside
SamsungGalaxy class

19

© Vivek Kumar

Observations (2/2)

® These two classes are very much related

FixedBatte
Attribute: ® Having two separate classes might mean
e ol two different files
o Slightly less readability
l ® \When FixedBattery type instance variable
SamsungGalaxy IS only going to be used inside
myFixedBattery SamsungGalaxy, then why not include the
Methods contents of FixedBattery class into

SamsungGalaxy class?
o Object oriented programming ?

20

© Vivek Kumar

Solution

® How about writing FixedBattery class inside
SamsungGalaxy class? After all only SamsungGalaxy is
going to use FixedBattery

o How to nest and use the classes?

© Vivek Kumar

21

Solution: Nested Class

public class SamsungGalaxy {
private FixedBattery myBattery;

public SamsungGalaxy() {
myBattery = new FixedBattery();

}

private class FixedBattery {

}

© Vivek Kumar

22

Nested Classes in Java

Nested classes

e

Static
Nested classes

Inner classes

Method local
Inner classes

Anonymous
Inner classes

This lecture covers only
simple inner classes

© Vivek Kumar

Non-static classes

Contains non-static members
only

Static nested classes

o These contain static members of
a class

Method local inner class
contains classes inside method
body

Anonymous inner classes are
nameless class declared and
iInstantiated at same time

O

23

Inner Class

® Description
o Class defined in scope of another class

® Property

o Can directly access all variables & methods of enclosing class
(including private fields & methods)

® \Why inner class?
o Logical grouping of functionality

o Increases encapsulation

= Consider two top-level classes, A and B, where B needs access to
members of A that would otherwise be declared private. By hiding class B
within class A, A's members can be declared private and B can access
them. In addition, B itself can be hidden from the outside world
o More readability and maintainable code
24

© Vivek Kumar

Question

public class SamsungGalaxy {
private int version; // =2
private FixedBattery myBattery;

public SamsungGalaxy() {
myBattery = new FixedBattery();
}

private class FixedBattery {
private int version; // =3

private void print() {
int version = 4;
System.out.println(version);
System.out.println(this.version);

System.out.println(SamsungGalaxy.this.version);

}
}

© Vivek Kumar

® Find the output Iin
this program

Output =4, 3, 2

25

Inner Class Instance Inside a Method of Outter

public class SamsungGalaxy {

private FixedBattery myBattery; ® TO InStantlate the Inner
| class in some other

public SamsungGalaxy() { .
myBattery = new FixedBattery(); F: Eif;f;, f|r55t we f]Ei\/EB t()

J instantiate the outer

Class

privat? class FixedBatteTy { . .
;.)T\./ate boolean runDiagnosis() { } ® Thereafter, US|ng the

} object of the outer class,

public static void main(String[] args) { }A/EE can |f]€5t£if]t|€it€3 tf]EB
SamsungGalaxy sg = new SamsungGalaxy(); |[]f]€3f’(:|€3§;§;
SamsungGalaxy.FixedBattery sgb « 0

= sg.new FixedBattery(); o Note the usage of “new

boolean test = sgb.runDiagnosis(); keyword

}
}

26

© Vivek Kumar

Inner Class Instance Outside Outer Class

}

public class SamsungGalaxy {

private FixedBattery myBattery;

public SamsungGalaxy() {
myBattery = new FixedBattery();

}

private class FixedBattery {
private boolean runDiagnosis() { }

}

}

public class Main {

public static void main(String[] args) {
SamsungGalaxy sg = new SamsungGalaxy();
SamsungGalaxy.FixedBattery sgb
= sg.new FixedBattery();

boolean test = sgb.runDiagnosis();

}

© Vivek Kumar

Is this code correct?
o NO, compilation error!

Inner class

FixedBattery is

private and hence

cannot be accessed

In another class

o Rules of “private”
modifier

o Making the inner class
and its method as
public will correct this
code

27

Next Lecture

® UML diagrams

