
Lecture 14:
Unit Testing and Inner Classes

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE201: Advanced Programming

Today’s Lecture
● Unit testing with JUnit
● Inner classes

Bugs and Testing
● Software reliability: Probability that a software system will not

cause failure under specified conditions.
o Measured by uptime, MTTF (mean time till failure), crash data.

● Bugs are inevitable in any complex software system.
o Industry estimates: 10-50 bugs per 1000 lines of code.
o A bug can be visible or can hide in your code until much later.

● Testing: A systematic attempt to reveal errors.
o Failed test: an error was demonstrated.
o Passed test: no error was found (for this particular situation)

3
© Vivek Kumar

Manual Testing v/s Automated Testing
Manual Testing Automated Testing

Executing a test cases manually without any tool
support is known as manual testing

Taking tool support and executing the test cases by using
an automation tool is known as automation testing

Time-consuming and tedious − Since test cases are
executed by human resources, it is very slow and

tedious

Fast − Automation runs test cases significantly faster
than human resources

Huge investment in human resources − As test cases
need to be executed manually, more testers are required

in manual testing

Less investment in human resources − Test cases are
executed using automation tools, so less number of

testers are required in automation testing

Less reliable − Manual testing is less reliable, as it has to
account for human errors

More reliable − Automation tests are precise and
reliable.

Non-programmable − No programming can be done to
write sophisticated tests to fetch hidden information

Programmable − Testers can program sophisticated tests
to bring out hidden information

4Source: https://www.tutorialspoint.com/junit/junit_overview.htm

JUnit: Java Unit Testing Framework
● The Java library JUnit helps us to easily

perform automated unit testing
● The basic idea:

o For a given class Foo, create another class
FooTest to test it, containing various "test
case" methods to run.

o Each method looks for particular results and
passes / fails

● JUnit provides "assert" commands to help
us write tests.
o The idea: Put assertion calls in your test

methods to check things you expect to be
true. If they aren't, the test will fail

5
© Vivek Kumar

Sample JUnit Test

6

/* The class method to be tested */
public class Sum {
 private int var1, var2;
 public Sum(int v1, int v2) {var1=v1; var2=v2;}
 public int sum () {
 return var1 + var2;
 }
}

/* Junit test class */

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class MyTest {

 @Test
 public void testSum() {
 Sum mySum = new Sum(1, 1);
 int sum = mySum.sum();
 assertEquals(2, sum);
 }
}

/* Junit test runner class */

import org.junit.runner.JUnitCore;
import org.junit.runner.Result;
import org.junit.runner.notification.Failure;

public class TestRunner {
 public static void main(String[] args) {
 Result result= JUnitCore.runClasses(MyTest.class);
 for (Failure failure : result.getFailures()) {
 System.out.println(failure.toString());

}
 System.out.println(result.wasSuccessful());

}
}

static import allows us to access the static
members of a class directly without
specifying the class name
$ javac -cp .:./path_to/junit-
4.10.jar Sum.java MyTest.java
TestRunner.java
$ java -cp .:./path_to/junit-
4.10.jar TestRunner

© Vivek Kumar

JUnit Assertion Methods

● Each method can also be passed a string to display if it fails:
o e.g. assertEquals("message", expected, actual)
o Why is there no pass method?

● Detailed description: https://junit.org/junit4/javadoc/4.8/org/junit/Assert.html 7

assertTrue(test) fails if the boolean test is false
assertFalse(test) fails if the boolean test is true
assertEquals(expected, actual) fails if the values are not equal
assertSame(expected, actual) fails if the values are not the same (by ==)

assertNotSame(expected, actual) fails if the values are the same (by ==)

assertNull(value) fails if the given value is not null

assertNotNull(value) fails if the given value is null
fail() causes current test to immediately fail

What is Wrong?

● We are passing two objects
of Sum type into the
testIncr() method where
the assertEquals checks
for equality
o Missing equals() method in

Sum !
o No compilation/runtime error

but test will fail 8

/* The class method to be tested */
public class Sum {
 private int var1, var2;
 public Sum(int v1, int v2) {var1=v1; var2=v2;}
 public void incr () {
 var1++; var2++;
 }
}

/* Junit test class */
import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class MyTest {

 @Test
 public void testIncr() {
 Sum mySum = new Sum(1, 1);
 mySum.incr();
 Sum expected = new Sum(2, 2);
 assertEquals(expected, mySum);
 }
}

© Vivek Kumar

What’s Still Wrong?

testIncr(MyTest):
expected:<Sum@2e817b38> but
was:<Sum@c4437c4>

● Missing toString()
method!!

9

/* The class method to be tested */
public class Sum {
 private int var1, var2;
 public Sum(int v1, int v2) {var1=v1; var2=v2;}
 public void incr () {
 var1++; var2++;
 }

 @Override
 public boolean equals(Object o) {
 if(o!=null && getClass()==o.getClass()) {
 Sum s = (Sum) o;
 return ((var1==s.var1)&&(var2==s.var2));
 }
 return false;
 }
}

/* Junit test class */
import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class MyTest {

 @Test
 public void testIncr() {
 Sum mySum = new Sum(1, 1);
 mySum.incr();
 Sum expected = new Sum(3, 3);
 assertEquals(expected, mySum); //should fail
 }
}

© Vivek Kumar

The Correct Version

testIncr(MyTest):
expected:<(3,3)> but was:<(2,2)>

Note: JUnit tests should be
independent to each other as
JUnit can run them in any order
by using multithreading

10

/* The class method to be tested */
public class Sum {
 private int var1, var2;
 public Sum(int v1, int v2) {var1=v1; var2=v2;}
 public void incr () {
 var1++; var2++;
 }

 @Override
 public boolean equals(Object o) {
 if(o!=null && getClass()==o.getClass()) {
 Sum s = (Sum) o;
 return ((var1==s.var1)&&(var2==s.var2));
 }
 return false;
 }

 @Override
 public String toString() {
 return "("+Integer.toString(var1)+",”
 +Integer.toString(var2)+")";
 }
}

/* Junit test class */
import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class MyTest {

 @Test
 public void testIncr() {
 Sum mySum = new Sum(1, 1);
 mySum.incr();
 Sum expected = new Sum(3, 3);
 assertEquals(expected, mySum); //should fail
 }
}

© Vivek Kumar

Tests With a Timeout
@Test(timeout = 5000)
public void name() { ... }

o The above method will be considered a failure if it doesn't finish
running within 5000 ms

private static final int TIMEOUT = 2000;
...
@Test(timeout = TIMEOUT)
public void name() { ... }

o Times out / fails after 2000 ms

11

Testing for Exceptions

12

@Test(expected = ExceptionType.class)
 public void name() {
 ...
 }

o Will pass if it does throw the given exception.
§ If the exception is not thrown, the test fails
§ Use this to test for expected errors

 @Test(expected = ArrayIndexOutOfBoundsException.class)
 public void testBadIndex() {
 ArrayIntList list = new ArrayIntList();
 list.get(4); // should fail
 }

Setup and Teardown
@Before
 public void name() { ... }
 @After
 public void name() { ... }

● Methods to run before/after each test case method is called

 @BeforeClass
 public static void name() { ... }
 @AfterClass
 public static void name() { ... }

● Methods to run once before/after the entire test class runs

13

JUnit Test Suites

14

/* Junit testcase class-1 */
import org.junit.Test;
import static org.junit.Assert.assertEquals;
public class MyTest1 {
 @Test
 public void testSum() {
 Sum mySum = new Sum(1, 1);
 int sum = mySum.sum();
 assertEquals(2, sum);
 }
}

/* Junit testcase class-2 */
import org.junit.Test;
import static org.junit.Assert.assertEquals;
public class MyTest2 {
 @Test
 public void testIncr() {
 Sum mySum = new Sum(1, 1);
 mySum.incr();
 Sum expected = new Sum(2, 2);
 assertEquals(expected, mySum);
 }
}

/* Junit test suite class */

import org.junit.runner.RunWith;
import org.junit.runners.Suite;

@RunWith(Suite.class)

@Suite.SuiteClasses({
 MyTest1.class,
 MyTest2.class
})

public class TestSuite { }

● Test suite: One class that
runs many JUnit tests
o An easy way to run all of your

app's tests at once
● For this example, the classes Sum

and TestRunner are still the same
(Slide no. 7). Simply replace “MyTest”
in TestRunner with “TestSuite”

© Vivek Kumar

Tips for Testing
● You cannot test every possible input, parameter value, etc.

o So you must think of a limited set of tests likely to expose bugs.

● Think about boundary cases
o positive; zero; negative numbers
o right at the edge of an array or collection's size

● Think about empty cases and error cases
o 0, -1, null; an empty list or array

● test behavior in combination
o maybe add usually works, but fails after you call remove
o make multiple calls; maybe size fails the second time only

15

Trustworthy Tests
● Test one thing at a time per test method

o 10 small tests are much better than 1 test 10x as large

● Each test method should have few (likely 1) assert statements
o If you assert many things, the first that fails stops the test
o You won't know whether a later assertion would have failed

● Tests should avoid logic.
o minimize if/else, loops, switch, etc
o avoid try/catch

§ If it's supposed to throw, use expected= ... if not, let JUnit catch it

● Torture tests are okay, but only in addition to simple tests
16

Let’s change gears…

17

Phone Batteries are Becoming
Non-Removable

18

● Nowadays most of the
phones are coming with
non removable batteries

● Earlier, when there were
removable batteries, we
could easily keep a spare
battery and replace when
the primary one drained!
o Yes, I know we can use a

power bank today!

© Vivek Kumar

Observations (1/2)

19

● In this example,
several Nokia phones
could use an instance
of the same
GeneralBattery class

● However, our class
SamsungGalaxy uses
an instance of
FixedBattery
o FixedBattery will never

be instantiated outside
SamsungGalaxy class

GeneralBattery

Attributes
Methods

NokiaA
myGeneralBattery

Methods

NokiaB
myGeneralBattery

Methods

FixedBattery

Attributes
Methods

SamsungGalaxy
myFixedBattery

Methods

© Vivek Kumar

Observations (2/2)

20

● These two classes are very much related
● Having two separate classes might mean

two different files
o Slightly less readability

● When FixedBattery type instance variable
is only going to be used inside
SamsungGalaxy, then why not include the
contents of FixedBattery class into
SamsungGalaxy class?
o Object oriented programming ?

FixedBattery

Attributes
Methods

SamsungGalaxy
myFixedBattery

Methods

© Vivek Kumar

Solution

21

● How about writing FixedBattery class inside
SamsungGalaxy class? After all only SamsungGalaxy is
going to use FixedBattery
o How to nest and use the classes?

© Vivek Kumar

Solution: Nested Class

22

public class SamsungGalaxy {

 private FixedBattery myBattery;

 public SamsungGalaxy() {
 myBattery = new FixedBattery();
 }

 private class FixedBattery {

 }
}

© Vivek Kumar

Nested Classes in Java

23

● Non-static classes
o Contains non-static members

only
● Static nested classes

o These contain static members of
a class

● Method local inner class
contains classes inside method
body

● Anonymous inner classes are
nameless class declared and
instantiated at same time

This lecture covers only
simple inner classes

© Vivek Kumar

Inner Class

24

● Description
o Class defined in scope of another class

● Property
o Can directly access all variables & methods of enclosing class

(including private fields & methods)
● Why inner class?

o Logical grouping of functionality
o Increases encapsulation

§ Consider two top-level classes, A and B, where B needs access to
members of A that would otherwise be declared private. By hiding class B
within class A, A's members can be declared private and B can access
them. In addition, B itself can be hidden from the outside world

o More readability and maintainable code
© Vivek Kumar

Question

25

● Find the output in
this program

 Output = 4, 3, 2

public class SamsungGalaxy {
 private int version; // =2
 private FixedBattery myBattery;

 public SamsungGalaxy() {
 myBattery = new FixedBattery();
 }

 private class FixedBattery {
 private int version; // =3

 private void print() {
 int version = 4;
 System.out.println(version);
 System.out.println(this.version);

System.out.println(SamsungGalaxy.this.version);
 }
 }
}

© Vivek Kumar

26

● To instantiate the inner
class in some other
class, first we have to
instantiate the outer
class

● Thereafter, using the
object of the outer class,
we can instantiate the
inner class
o Note the usage of “new”

keyword

public class SamsungGalaxy {

 private FixedBattery myBattery;

 public SamsungGalaxy() {
 myBattery = new FixedBattery();
 }

 private class FixedBattery {
 private boolean runDiagnosis() { }

 }

 public static void main(String[] args) {
 SamsungGalaxy sg = new SamsungGalaxy();
 SamsungGalaxy.FixedBattery sgb
 = sg.new FixedBattery();
 boolean test = sgb.runDiagnosis();
 }
}

Inner Class Instance Inside a Method of Outter

© Vivek Kumar

Inner Class Instance Outside Outer Class

27

● Is this code correct?
o NO, compilation error!

● Inner class
FixedBattery is
private and hence
cannot be accessed
in another class
o Rules of “private”

modifier
o Making the inner class

and its method as
public will correct this
code

public class SamsungGalaxy {

 private FixedBattery myBattery;

 public SamsungGalaxy() {
 myBattery = new FixedBattery();
 }

 private class FixedBattery {
 private boolean runDiagnosis() { }

 }
}

public class Main {
 public static void main(String[] args) {
 SamsungGalaxy sg = new SamsungGalaxy();
 SamsungGalaxy.FixedBattery sgb
 = sg.new FixedBattery();
 boolean test = sgb.runDiagnosis();
 }
}

© Vivek Kumar

Next Lecture
● UML diagrams

