CSE201: Advanced Programming

Lecture 15: Unified Modeling
Language

Vivek Kumar
Computer Science and Engineering
I1IT Delhi
vivekk@iiitd.ac.in

Last Lecture

JUnit unit testing

For a given class Foo, create another
class FooTest to test it, containing
various "test case" methods to run.

Each method looks for particular
results and passes / fails

The idea: Put “assert” calls in your test
methods to check things you expect to
be true. If they aren't, the test will fail
Inner classes

Favors logical grouping, encapsulation,
and readability of code

/* The class method to be tested */
public class Sum {

/* Junit test runner class */

import org.junit.runner.JUnitCore;
import org.junit.runner.Result;
import org.junit.runner.notification.Failure;

public class TestRunner {
public static void main(String[] args) {
Result result= JUnitCore.runClasses(MyTest.cla
for (Failure failure : result.getFailures()) {
System.out.println(failure.toString());
}

System.out.println(result.wasSuccessful());

S) 5

private int varl, var2;
public Sum(int v1, int v2) {varl=vl; var2=v2;}
public void incr () {

varl++; var2++;
}
@Override
public boolean equals(Object o) {

if(o!=null && getClass()==o0.getClass()) {

Sum s = (Sum) o;
return ((varl==s.varl)&&(var2==s.varl));
}
return false;
}
@Override

public String toString() {

}

}

public class SamsungGalaxy {

private FixedBattery myBattery;
public SamsungGalaxy() {
myBattery = new FixedBattery();

private class FixedBattery {
private boolean runDiagnosis() { }

public static void main(String[] args) {
SamsungGalaxy sg = new SamsungGalaxy();
SamsungGalaxy.FixedBattery sgb

boolean test = sgb.runDiagnosis();

return "("+Integer.toString(vari)+",”
+Integer.toString(var2)+")";

}

sg.new FixedBattery();

/* Junit test class */
import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class MyTest {

@Test
public void testIncr() {

Sum mySum = new Sum(1, 1);

mySum.incr();

Sum expected = new Sum(3, 3);
assertEquals(expected, mySum); //should fail

1

Today’s Lecture

® Introduction to UML

o We already covered UML in bits and pieces in prior lectures
= Sequence diagram (Lecture 2)
» Representing class relationships (Lectures 3—6)

® Relationships in use case diagrams

® Goal of this lecture is to give you more familiarity with UML
o You can model 80% of problems by using about 20% UML

o We will only cover less than 20% here
= Not possible to teach everything...

© Vivek Kumar

What is UML?

UML stands for Unified
Modeling Language

It's a widely used modeling
language in the field of soft
engineering

It's used to analyze, design, and
Implement software-based
systems

Pretty pictures (diagrams) —

© Vivek Kumar

Ideas to Program

Analysis (common sense)

!

Design (object oriented)

!

Implementation (actual programming)

!

Testing

LECTURE 02

* Analysis

o What to do and not how to do it

o Decide corner cases and exact
functionalities

* Design

o Define classes, their attributes and
methods, objects, and class
relatlonshlps

* Implementation

o Novice programmers often think that
writing code is the heart of software
development, but actually it should be
the least creative step

» Testing

o A program should be free of er;ors

Motivations for UML

® \We need a modeling language to:

o help develop efficient, effective and correct designs, particularly
Object Oriented designs

o communicate clearly with project stakeholders (concerned parties:
developers, customer, etc)

o give us the “big picture” view of the project

© Vivek Kumar

UML Diagrams

Three types of UML diagrams that we will cover:

1. Class diagrams: Represents static structure

2. Use case diagrams: Sequence of actions a system performs to
yield an observable result to an actor

3. Sequence diagrams: Shows how groups of objects interact in
some behavior 1 Class Name

= Already covered in Lecture 02 & = = oo M ™ot dinned

clickLogin i /:jj;,f:j{ with sold arrows
L display | ‘ Message direction
,,,,,,,,,, s<retums>> —
clickOK
lidate _-

_ Object lifespan

‘ R\eply (return) ‘

© Vivek Kumar

UML Diagrams: Class Diagrams

® Better name: “Static structure diagram”

o Doesn't describe temporal aspects

o Doesn‘t describe individual objects: Only the overall structure of
the system

® There are “object diagrams” where the boxes represent
Instances
o Rarely used and not covered in this course

© Vivek Kumar

UML Class Notation

® Aclass is arectangle divided into three parts
« Class name
« Class attributes (i.e. data members, variables)
« Class operations (i.e. methods)

® Modifiers Employee

* Private: -
 Public: +

* Protected: #

« Static: Underlined

-Name: String
+ID: long
#Salary: double

+getName: String

® Abstract class/methods +setName() | | |
o Name in italics -calcInternalStuff(in x : byte, in y : decimal)

© Vivek Kumar

Different Levels of Specifying Classes

Window
{abstract,
Window author=Joe,

status=tested |
+size: Area = (100,100)
#visibility: Boolean = invisible

Window sdefault-size. Beclangle
._rrm_i.u# ximum-size: Bectangle
-xptr: XWindow"*

+display ()

size: Area
visibility: Booclean

display () Huoe O
hide () —attach XWindow(xwin: Xwindow™)

Use this for your project

© Vivek Kumar

Class Relationships

® UML diagrams for these class relationships are already
covered before (Lectures 04, 05 and 08)
o Association
o Composition
o Dependency
o Inheritance

® \We will only cover binary association relationship here

Class Relationship: Binary Association

Both entities “Knows About” each other (two-way association)

-myB: B -myA: A

+doSomething() +service()

UML Multiplicities

Links on associations to specify more details about the relationship

Multiplicities

Meaning

zero or one instance. The

Company

l.,»

0.1 notation “n.. M” indicates
n to m instances.
0% o * no limit on the number of
h instances (including none).
1 exactly one instance

at least one instance

employer employee
\

How you will
implement?

Person

11

Exceptions

MyClass

java.lang.Exception

FaY

MyException

12

Interfaces

<<interface>>
Owner

+acquire(property)
+dispose(property)

Person

-real
-tangible
-intangible

T B

Corporation

-current
-fixed
-longTerm
-intangible

How is this diagram
different from that

of aclass ?

13

Sample Class Diagram (1/2)

In your UML
diagrams, these “+”,
“” etc, should be

inside the rectangle.

“zhicle

speed [int
colour : int

tuml=eftQ : vwoid
tumRight(Q : wvoid

N

Bicycle

HringBell(O : woid

hiotorwizhicle

size OfEngine : int
licencePlate : String
+get Size Of Engina() : woid
HagetLicensePlate() : wvoid

P2

hotorBike Car
=lnumberOfDoors : int
Hrev Engine(: void Hswitch OnArCon() - woid

Hget NumberOf Doors() : wvoid

14

Sample Class Diagram (2/2)

Company Employee

name : String name : String

employees : List employeeNumber : int

worksFor

HgetName() : String 1 = 1salary :int
* .
HaetEmployees() : List smanager : hianager
employer employee HgetName() : String

Hget Employee Number() : int
HaetSalary() : int
Haethanagen)) : Manager

P

o

hanager

manages : List

Contractor

HaddTeamhfembenemployee: Employee) supervisep
HagetTeamhdembers() : Lst

*
1

lengthOf Contract : Date

HaetLength Of Contract() : Date

supervisor

UML Diagrams: Use Cases

Means of capturing requirements

o Usedata very early ;r)]hase of software development for requirement
gathering (analysis phase)

o Provides a high level overview of the system
o Class diagrams are created after generating use case diagrams

Document interactions between user(s) and the system
o User (actor) is not part of the system itself
o But an actor can be another system

® A scenario based technique in UML

Use case diagrams describe what a system does from the
standpoint of an external observer. The emphasis is on what a
system does rather than how

© Vivek Kumar

16

Actors in Use Case

® \Vhat is an Actor?

o Auser or outside system that interacts with the

system being designed in order to obtain some value
from that interaction

o It can be a:
* Human
= Peripheral device (hardware)
= External system or subsystem
= Time or time-based event

o Labelled using a descriptive noun or phrase
o Represented by stick figure /

17

Use Case Analysis (1/4)

® Sample scenario

“A patient calls the clinic to make an appointment for a yearly
checkup. The receptionist finds the nearest empty time slot in the
appointment book and schedules the appointment for that time
slot”

® \Ne want to write a use case for this scenario

18

Source: http://www.cs.fsu.edu/~baker/swe1/restricted/notes/ppt/UseCaseDiagrams.ppt

Use Case Analysis (2/4)

® Sample scenario

“A patient calls the clinic to make an appointment for a yearly
checkup. The receptionist finds the nearest empty time slot in the
appointment book and schedules the appointment for that time
slot”

® \Who is the actor?
o The actor is a “Patient” here

19

Source: http://www.cs.fsu.edu/~baker/swe1/restricted/notes/ppt/UseCaseDiagrams.ppt

Use Case Analysis (3/4)

® Sample scenario

“A patient calls the clinic to make an appointment for a yearly
checkup. The receptionist finds the nearest empty time slot in the

appointment book and schedules the appointment for that time
slot”

® A use case is a summary of scenarios for a single task or
goal

o So, what is the use case here?
o The use case is “Make Appointment”

20

Source: http://www.cs.fsu.edu/~baker/swe1/restricted/notes/ppt/UseCaseDiagrams.ppt

Use Case Analysis (4/4)

Tlhe_ picture below is a Make Appointment use case for the medical
clinic.

The actor is a Patient. The connection between actor and use case is
a communication

Actors are stick figures

Use cases are ovals
o Labelled using a descriptive verb-noun phrase

Communications are lines that link actors to use cases

Boundary rectangle is placed around the perimeter of the system to
show how the actors communicate with the system

/- communication
actor > i @ke Appointmtiilt_:D
Patient 3
“— use case 21

Source: http://www.cs.fsu.edu/~baker/swe1/restricted/notes/ppt/UseCaseDiagrams.ppt

Use Case Diagram

® A use case "
AN

diagram is a s
collection of A\
actors, use Managsment
cases, and their

Appointment System

Make -

appointment

communications

©

ﬂ’l\ﬂ "

Produce \
schedule |
information
Record @
availability /

AN

Doctor

Source: http://www.cs.fsu.edu/~baker/swe1/restricted/notes/ppt/UseCaseDiagrams.ppt

22

Relationships for Use Cases

® Association

® Generalization
® Extend

® Include

© Vivek Kumar

23

Association Relationship

Withdraw Cash

® EXxists only between an actor and a
use case |

o Indicates that an actor can use % Check Balance

certain functionality of the system

® Represented by a sold line without ‘v
arrowhead

o Most commonly used representation

Edit Account

Donate to Charity

o Uncommon to show one-way
association

1 Play
Game

and a use case can also show
multiplicity at each end

m 9000

® [he association between an actor %
2 » *

Player

© Vivek Kumar

Generalization Relationship

® Could exit between two
actors or between two
use cases
o Indicates parent/child <= © <>
relationship
® Represented by a solid
line with a triangular K
and hollow arrowhead

o From child to parent

. ‘) :‘
AT Choose Seats

(‘\

J\

Club Customer

25

© Vivek Kumar

Extend Relationship “<<extend>”

® Exists only between use cases

o This relationships represent optional
or seldom invoked cases

o Indicates that although one use
case is a variation of another but it is
iInvoked rarely

» Lot of shared code between these
use cases (not to be confused
with inheritance)

® Represented using a dashed
arrow with an arrowhead. The
notation “<< extend >>" is also
mentioned above the arrow

o The direction of the arrow is toward
the extended use cases

© Vivek Kumar

(3

Caller

e
_,-'-1.
.

Place Call

Fas
|
|
|

| < <extend=>

Callee

(J

Place Confeence Cal!

Calles

26

Include Relationship “<<include>”

® Exists only between use cases

Cash «include»

_ _ Deposit «include»
o Represents behavior that is Funds /7>~ 04
Cust
factored out of the use case _(Authentication
o Doesn’t mean that the factored out /,

use case is an optional or seldom
Invoked cases

® Represented using a dashed
«include» =~

arrow with an arrowhead. The "

notation “<< include>>"is also “ijc'_“d_e»
mentioned above the arrow .

o The direction of the arrow is cinclude»
toward the included use case .

© Vivek Kumar

Sample Use Case

‘/-subject. system boundary

«Subsystem»
Checkout
multiplicity m c |
o «extendy .7 /extend relationship
association P
actor \ /&
\ 1.* \
e > Checkout
\
a(,tor
Customer «mclude» \ Clerk
ﬂ include ——/ Payment —'i ‘l
relationship ,,--—-’71 99!
muItIDIIClty Payment Service
Star Customer s Casa """
\“-_

© uml-diagrams.org

Manage
Users

Administrator

28

Next Lecture

® Event driven programming using JavaFX

29

