
Lecture 15: Unified Modeling
Language
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE201: Advanced Programming

Last Lecture
● JUnit unit testing
● For a given class Foo, create another

class FooTest to test it, containing
various "test case" methods to run.

● Each method looks for particular
results and passes / fails

● The idea: Put “assert” calls in your test
methods to check things you expect to
be true. If they aren't, the test will fail

● Inner classes

● Favors logical grouping, encapsulation,
and readability of code

1

Today’s Lecture
● Introduction to UML

o We already covered UML in bits and pieces in prior lectures
§ Sequence diagram (Lecture 2)
§ Representing class relationships (Lectures 3–6)

● Relationships in use case diagrams
● Goal of this lecture is to give you more familiarity with UML

o You can model 80% of problems by using about 20% UML
o We will only cover less than 20% here

§ Not possible to teach everything…

2
© Vivek Kumar

What is UML?
● UML stands for Unified

Modeling Language
● It’s a widely used modeling

language in the field of software
engineering

● It’s used to analyze, design, and
implement software-based
systems

● Pretty pictures (diagrams)

3
© Vivek Kumar

4

Motivations for UML
● We need a modeling language to:

o help develop efficient, effective and correct designs, particularly
Object Oriented designs

o communicate clearly with project stakeholders (concerned parties:
developers, customer, etc)

o give us the “big picture” view of the project

© Vivek Kumar

5

UML Diagrams
Three types of UML diagrams that we will cover:

1. Class diagrams: Represents static structure
2. Use case diagrams: Sequence of actions a system performs to

yield an observable result to an actor
3. Sequence diagrams: Shows how groups of objects interact in

some behavior
§ Already covered in Lecture 02

© Vivek Kumar

6

UML Diagrams: Class Diagrams
● Better name: “Static structure diagram”

o Doesn‘t describe temporal aspects
o Doesn‘t describe individual objects: Only the overall structure of

the system
● There are “object diagrams” where the boxes represent

instances
o Rarely used and not covered in this course

© Vivek Kumar

UML Class Notation
● A class is a rectangle divided into three parts

• Class name
• Class attributes (i.e. data members, variables)
• Class operations (i.e. methods)

● Modifiers
• Private: -
• Public: +
• Protected: #
• Static: Underlined

● Abstract class/methods
o Name in italics

Employee

-Name: String
+ID: long
#Salary: double

+getName: String
+setName()
-calcInternalStuff(in x : byte, in y : decimal)

7
© Vivek Kumar

Different Levels of Specifying Classes

8

Use this for your project

© Vivek Kumar

9

Class Relationships
● UML diagrams for these class relationships are already

covered before (Lectures 04, 05 and 08)
o Association
o Composition
o Dependency
o Inheritance

● We will only cover binary association relationship here

Class Relationship: Binary Association

Both entities “Knows About” each other (two-way association)

A

-myB: B

+doSomething()

B

-myA: A

+service()

10

UML Multiplicities

Multiplicities Meaning

0..1
zero or one instance. The

notation “n . . M” indicates
n to m instances.

0..* or * no limit on the number of
instances (including none).

1 exactly one instance
1..* at least one instance

Links on associations to specify more details about the relationship

11

How you will
implement?

Exceptions

12

Interfaces

13

How is this diagram
different from that

of a class ?

14

Sample Class Diagram (1/2)
-
-

-
-

-
+
+

+
+

+
+

+

+

In your UML
diagrams, these “+”,

“-”, etc, should be
inside the rectangle.

15

Sample Class Diagram (2/2)

**

*

-
-

-
-
-
-

-

-

+
+

+
+
+
+

+
+

+

16

UML Diagrams: Use Cases
● Means of capturing requirements

o Used at a very early phase of software development for requirement
gathering (analysis phase)

o Provides a high level overview of the system
o Class diagrams are created after generating use case diagrams

● Document interactions between user(s) and the system
o User (actor) is not part of the system itself
o But an actor can be another system

● A scenario based technique in UML
● Use case diagrams describe what a system does from the

standpoint of an external observer. The emphasis is on what a
system does rather than how

© Vivek Kumar

Actors in Use Case
● What is an Actor?

o A user or outside system that interacts with the
system being designed in order to obtain some value
from that interaction

o It can be a:
§ Human
§ Peripheral device (hardware)
§ External system or subsystem
§ Time or time-based event

o Labelled using a descriptive noun or phrase
o Represented by stick figure

17

Use Case Analysis (1/4)
● Sample scenario

o “A patient calls the clinic to make an appointment for a yearly
checkup. The receptionist finds the nearest empty time slot in the
appointment book and schedules the appointment for that time
slot"

● We want to write a use case for this scenario

18
Source: http://www.cs.fsu.edu/~baker/swe1/restricted/notes/ppt/UseCaseDiagrams.ppt

Use Case Analysis (2/4)
● Sample scenario

o “A patient calls the clinic to make an appointment for a yearly
checkup. The receptionist finds the nearest empty time slot in the
appointment book and schedules the appointment for that time
slot”

● Who is the actor?
o The actor is a “Patient” here

19
Source: http://www.cs.fsu.edu/~baker/swe1/restricted/notes/ppt/UseCaseDiagrams.ppt

Use Case Analysis (3/4)
● Sample scenario

o “A patient calls the clinic to make an appointment for a yearly
checkup. The receptionist finds the nearest empty time slot in the
appointment book and schedules the appointment for that time
slot”

● A use case is a summary of scenarios for a single task or
goal
o So, what is the use case here?
o The use case is “Make Appointment”

20
Source: http://www.cs.fsu.edu/~baker/swe1/restricted/notes/ppt/UseCaseDiagrams.ppt

Use Case Analysis (4/4)
● The picture below is a Make Appointment use case for the medical

clinic.
● The actor is a Patient. The connection between actor and use case is

a communication
● Actors are stick figures
● Use cases are ovals

o Labelled using a descriptive verb-noun phrase
● Communications are lines that link actors to use cases
● Boundary rectangle is placed around the perimeter of the system to

show how the actors communicate with the system

21
Source: http://www.cs.fsu.edu/~baker/swe1/restricted/notes/ppt/UseCaseDiagrams.ppt

Use Case Diagram
● A use case

diagram is a
collection of
actors, use
cases, and their
communications

22
Source: http://www.cs.fsu.edu/~baker/swe1/restricted/notes/ppt/UseCaseDiagrams.ppt

Relationships for Use Cases
● Association
● Generalization
● Extend
● Include

23
© Vivek Kumar

Association Relationship
● Exists only between an actor and a

use case
o Indicates that an actor can use

certain functionality of the system
● Represented by a sold line without

arrowhead
o Most commonly used representation
o Uncommon to show one-way

association
● The association between an actor

and a use case can also show
multiplicity at each end

24
© Vivek Kumar

Generalization Relationship

25

● Could exit between two
actors or between two
use cases
o Indicates parent/child

relationship
● Represented by a solid

line with a triangular
and hollow arrowhead
o From child to parent

© Vivek Kumar

Extend Relationship “<<extend>”

26

● Exists only between use cases
o This relationships represent optional

or seldom invoked cases
o Indicates that although one use

case is a variation of another but it is
invoked rarely
§ Lot of shared code between these

use cases (not to be confused
with inheritance)

● Represented using a dashed
arrow with an arrowhead. The
notation “<< extend >>” is also
mentioned above the arrow
o The direction of the arrow is toward

the extended use cases
© Vivek Kumar

Include Relationship “<<include>”
● Exists only between use cases

o Represents behavior that is
factored out of the use case

o Doesn’t mean that the factored out
use case is an optional or seldom
invoked cases

● Represented using a dashed
arrow with an arrowhead. The
notation “<< include>>” is also
mentioned above the arrow
o The direction of the arrow is

toward the included use case
27

© Vivek Kumar

Sample Use Case

28

Star Customer

Next Lecture
● Event driven programming using JavaFX

29

