
Lecture 17: Intro to Multithreading
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE201: Advanced Programming



Last Lecture – JavaFX

1

Event driven 
programming
● In event-driven 

programming, 
code is executed 
upon activation of 
events



Today’s Lecture
● Introduction to processes and threads
● Quiz-4

2



Your Laptop is Multitasking (1/2)
● Multitasking allows many more 

tasks to be run than there are 
CPUs

● In the case of a computer with a 
single CPU, only one task is 
said to be running at any point 
in time, meaning that the CPU is 
actively executing instructions 
for that task

● Multitasking solves the problem 
by scheduling which task may 
be the one running at any given 
time, and when another waiting 
task gets a turn

3

MSWord Chrome Eclipse iTunes

Operating System (Windows, Mac, etc.)

© Vivek Kumar



Your Laptop is Multitasking (1/2)
● In case of multicore 

processor each core will 
be running one task

● Here too OS will be 
multitasking by deciding 
which task runs on which 
core

4

MSWord Chrome Eclipse iTunes

Operating System (Windows, Mac, etc.)

Multicore CPU
© Vivek Kumar



Process
● Process is a program in execution

o i.e., an icon of M.S. Word on your desktop isn’t a process. It would 
become a process once you have launched it

● Each process has its own address/memory space
● Separate processes don’t have access to each other’s 

memory space
o O.S. can help in creating a communication channel between 

processes if there be any need

5
© Vivek Kumar



6

● Diagram on left shows 
process life-cycle
o New – process being 

created
o Ready – waiting for a free 

processor
o Running – instructions are 

executing
o Waiting – waiting for some 

event (I/O, etc.)
o Terminated – execution is 

completed

Process Lifecycle

© Vivek Kumar



7

Context Switch ● Switching the CPU to 
another process 
requires saving the 
state of the old 
process and loading 
the saved state for 
the new process

● A Process Control 
Block (PCB) is a data 
structure maintained 
by the Operating 
System to keep track 
of processes (e.g., 
state, id, CPU 
registers etc.)



Process Structure
● Process contains:

o Code
§ Program instructions

o Data 
§ Global variables in program

o Program counter (PC)
§ Address of currently executing program 

instruction
o Registers

§ CPU registers
o Stack

§ Local variables
§ caller-callee relationship between 

function
8

Stack

Files Code Data

Registe
r PC

Heap

© Vivek Kumar



Thread – A Lightweight Process

9

● Processes are heavyweight
o Personal address space (allocated 

memory)
o Communication across process 

always requires help from Operating 
System

● Threads are lightweight
o Share resources inside the parent 

process (code, data and files)
§ Easy to communicate across sibling 

threads!
o They have their own personal stack 

(local variables, caller-callee 
relationship between function)
§ Each thread is assigned a different 

job in the program

● A process can have one or more 
threads

© Vivek Kumar



Uses of Threads in Java
● Video game application (one process)

o one thread for graphics
o one thread for user interaction
o one thread for networking with peers on internet

● Parallel programming
o Speeding up the program execution by using multiple threads
o A program to find the array sum can be made faster by subdividing the array 

among N threads (total indices at each thread = array.length/N). Each thread 
will find its local sum and later these local sums will be combined to find the total 
sum

● Producer-consumer type applications
o News reporter (producer) sends report to new agency and one or more office clerks 

(consumers) will process each items and upload to Twitter, Facebook, Website, or 
telecast on TV

● Client-server type applications
o Server could create a new thread for listening to a new client

10
© Vivek Kumar



Concurrency vs. Parallelism
CPU CPU1 CPU2

© Vivek Kumar



Advantages of Multithreading
● Responsiveness

o Even if part of program is blocked or performing lengthy operation, 
multithreading allows the program to continue

● Economical resource sharing
o Threads share memory and resources of their parent process 

which allows multiple tasks to be performed simultaneously inside 
the process 

● Utilization of multicores
o Easily scale on modern multicore processors

12
© Vivek Kumar



13

Class 
Thread in 
Java



Alive

New Thread Dead Thread

Running

Runnable

new ThreadExample();

run() method returns

while (…) { … }

Blocked
Blocking on some 
operation or IO call

thread.start();

Thread State Diagram (Lifecycle)

© Vivek Kumar



Thread Priority
● Every thread has a priority (or seniority)
● The highest priority runnable thread is always selected by JVM for 

execution above lower priority threads
● The priority values range from 1 to 10, in increasing priority
● When a thread is created, it inherits the priority of the thread that 

created it
● The priority can be adjusted subsequently using the setPriority() 

method
● The priority of a thread may be obtained using getPriority()
● Pre-defined priority constants in Thread class:

o MIN_PRIORITY=1
o MAX_PRIORITY=10
o NORM_PRIORITY=5

© Vivek Kumar



Java Application Thread
● When we execute an application:

o The JVM creates a Thread object whose task is defined by the 
main() method 

o It starts the thread with NORM_PRIORITY
o The thread executes the statements of the program one by one 

until the method returns and the thread dies

© Vivek Kumar



Daemon Threads
● Daemon threads are “background” threads, that 

provide services to other threads, e.g., the 
garbage collection thread

● JVM will not exit if non-Daemon threads are 
executing

● JVM will exit if only Daemon threads are 
executing

● Daemon threads die when the JVM exits

© Vivek Kumar



Next Lecture
● Programming with threads in Java

o Threads in Action !
o A.K.A., Parallel Programming!

18


