CSE201: Advanced Programming

Lecture 17: Intro to Multithreading

Vivek Kumar
Computer Science and Engineering
I1IT Delhi
vivekk@iiitd.ac.in

Event driven

p rog rammin g B Scene (Event source object)
® In event-driven < Parent

prog ramm|ng, (Pane. Control)

code is executed » Nodes

Last Lecture — JavaFX

bunonl

Clicking a button

~— Stage

fires an action event

| > event i >'handkr|
An event is The event handler

an object processes the event

(Event object) (Event handler object

]
upon activation of | | |[[]
events

public class HelloWorld extends Appl

public static void main(String[]}
launch(args);

public class HelloWorld extends Application {

public static void main(String[] args) {
launch(args);

}

//0Override start method in Application class

@Override

public void start(Stage primaryStage) {
// Set the stage title
primaryStage.setTitle("MyJavaFX");
// Create a button and place it in scene
Button btn = new Button(”Hello World");
Scene scene = new Scene(btn, 200, 250);
// Place the scene in the stage
primaryStage.setScene(scene);
// Display the stage
primaryStage.show();

}

Button btn new Button(“Say Hello World”);

btn.setOnAction(new EventHandler<ActionEvent>() {

@Override
public void handle(ActionEvent event) {
Svstem.out.println("Hello World!");
}
});

@Override

primaryStage.setTitle("Hello
Button btn new Button(“Say

StackPane pane
pane.getChildren().add(btn);
Scene scene new Scene(pane,

primaryStage.setScene(scene);
// Display the stage
primaryStage.show();
}
}

@Override

}

public void start(Stage primaryStage) { // entry point

btn.setOnAction(new HelloEvent());
new StackPane();

// Place the scene in the stage

class HelloEvent implements EventHandler<ActionEvent> {

public void handle(ActionEvent event) {
System.out.println("Hello World!");

World!");
Hello World”);

200, 50);

btn.setOnAction(e -> {
Svstem.out.println("Hello World!");

Ni

Today’s Lecture

® Introduction to processes and threads
® Quiz-4

Your Laptop is Multitasking (1/2)

MSWord Chrome Eclipse

iTunes

Operating System (Windows, Mac, etc.)

© Vivek Kumar

Multitasking allows many more
tasks to be run than there are

CPUs

In the case of a computer with a
single CPU, only one task is
said to be running at any point
in time, meaning that the CPU is
actively executing instructions
for that task

Multitasking solves the problem
by scheduling which task may
be the one running at any given
time, and when another waiting
task gets a turn

Your Laptop is Multitasking (1/2)

MSWord

Chrome

Eclipse

iTunes

Operating System (Windows, Mac, etc.)

-

(.}

Multicore CPU

© Vive

k Kumar

n case of multicore
orocessor each core will
De running one task

-Here too OS will be
multitasking by deciding

which task runs on which
core

Process

® Process is a program in execution
o i.e., anicon of M.S. Word on your desktop isn’t a process. It would
become a process once you have launched it
® Each process has its own address/memory space

® Separate processes don’t have access to each other’s

memaory Space

o 0.S. can help in creating a communication channel between
processes if there be any need

© Vivek Kumar

Process Lifecycle

Start

Ready

Wait

Running

Terminated

© Vivek Kumar

® Diagram on left shows
process life-cycle

O

New — process being
created

Ready — waiting for a free
processor

Running — instructions are
executing

Waiting — waiting for some
event (l/O, etc.)

Terminated — execution is
completed

Context Switch

process 0

running * e

idle

operating system

-3
save context into PCB0

load conte);(t from PCB,

save context into PCB,

load context from PCB,
|

)
running 1

process 1

idle

running

idle

Switching the CPU to
another process
requires saving the
state of the old
{)rocess and loading
he saved state for
the new process

A Process Control
Block (PCB) is a data
structure maintained
by the Operating
S]ystem to keep track
of processes (e.g.,
state, id, CPU
registers etc.)

Process Structure

® Process contains:

| Files | | Code | | Data | O COde
e] = Program instructions
' o Data
» Global variables in program
Stack |1 o Program counter (PC)
— = Address of currently executing program
Instruction

o Registers
= CPU registers
Heap o Stack

= |Local variables

= caller-callee relationship between
function

© Vivek Kumar

Thread — A Lightweight Process

code

data

files

registers

stack

© Vivek Kumar

Processes are heavyweight

o Personal address space (allocated
memory)

o Communication across process
always requires help from Operating
System

Threads are lightweight
o Share resources inside the parent
process (code, data and files)

. Easy to communicate across sibling
threads!

o They have their own personal stack
(local variables, caller-callee
relationship between function)

. Each thread is assigned a different
job in the program

A process can have one or more

threads
9

Uses of Threads in Java

Video game application (one process)

o one thread for graphics

o one thread for user interaction

o one thread for networking with peers on internet

Parallel programming
o Speeding up the program execution by using multiple threads

o A program to find the array sum can be made faster by subdividing the array
among N threads (total indices at each thread = array.length/N). Each thread

will find its local sum and later these local sums will be combined to find the total
sum

Producer-consumer type applications

o News reporter (Iproducer) sends report to new agency and one or more office clerks

%consumers will process each items and upload to Twitter, Facebook, Website, or
elecaston TV

Client-server type applications

o Server could create a new thread for listening to a new client
10

© Vivek Kumar

Concurrency vs. Parallelism

CPU

-

~

CPU1

-

~

CPU2

© Vivek Kumar

Advantages of Multithreading

® Responsiveness
o Even if part of program is blocked or performing lengthy operation,
multithreading allows the program to continue

® Economical resource sharing

o Threads share memory and resources of their parent process
which allows multiple tasks to be performed simultaneously inside
the process

® Utilization of multicores
o Easily scale on modern multicore processors

12

© Vivek Kumar

Class
Thread In

Java

Constructors of Thread class

1. Thread ()

2. Thread (String str)

3. Thread (Runnable r)

4. Thread (Runnable r, String str)

You can create new thread, either by extending Thread class or by implementing Runnable interface.

Thread class also defines many methods for managing threads. Some of them are,

Method Description
setName() to give thread a name
getName() return thread's name
getPriority() return thread's priority
isAlive() checks if thread is still running or not
join() Wait for a thread to end
run() Entry point for a thread
sleep() suspend thread for a specified time

start() start a thread by calling run() method

13

Thread State Diagram (Lifecycle)

-

new ThreadExample();

Alive

~

-~

~

Running

while (.){ ... }

[New Thread }
thread.start

-

{Runnable } {Dead Thread }

run() method returns

Blocked

Bloﬂ\/g/on some
operation or IO call

© Vivek Kumar

Thread Priority

Every thread has a priority (or seniority)

The highest priority runnable thread is always selected by JVM for
execution above lower priority threads

The priority values range from 1 to 10, in increasing priority

When a thread is created, it inherits the priority of the thread that
created it

® The priority can be adjusted subsequently using the setPriority()
method

The priority of a thread may be obtained using getPriority()

Pre-defined priority constants in Thread class:
o MIN_PRIORITY=1

o MAX_PRIORITY=10
o NORM_PRIORITY=5

© Vivek Kumar

Java Application Thread

® \When we execute an application:

o The JVM creates a Thread object whose task is defined by the
main() method

o It starts the thread with NORM_PRIORITY

o The thread executes the statements of the program one by one
until the method returns and the thread dies

© Vivek Kumar

Daemon Threads

® Daemon threads are “background” threads, that
provide services to other threads, e.g., the
garbage collection thread

® JVM will not exit if non-Daemon threads are
executing

® JVM will exit if only Daemon threads are
executing

® Daemon threads die when the JVM exits

© Vivek Kumar

Next Lecture

® Programming with threads in Java

o Threads in Action!
o A.K.A., Parallel Programming!

18

