
Lecture 18: Thread Creation
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE201: Advanced Programming

© Vivek Kumar

Last Lecture
● Processes

o Program in execution
o Heavy weight

● Threads
o A lightweight process
o Share resources inside the parent process

§ Code
§ Global variables
§ File

● Advantages of multithreading
o Responsiveness

§ Even if part of program is blocked or
performing lengthy operation, multithreading
allows the program to continue

o Economical resource sharing
§ Threads share memory and resources of their

parent process which allows multiple tasks to
be performed simultaneously inside the
process

o Utilization of multicores
§ Easily scale on modern multicore processors

1

Today’s Lecture
● How to create your own thread in Java

2

Creating Threads in Java
● There are two ways to

create your own
Thread object

o Implementing the
Runnable interface

o Subclassing the
Thread class and
instantiating a new
object of that class

● In both cases the
run() method should
be implemented

© Vivek Kumar

public class MyThread implements java.lang.Runnable {

 @Override
 public void run() { }
}

public class MyThread extends java.lang.Thread {

 @Override
 public void run() { }
}

Sequential Array Sum Implementation
● This is a sequential

code to find the sum of
elements in an array

● Can we use
multithreading here?
o Which part of the code

we can parallelize?
o As the length of array

grows huge, the
execution time will start
increasing

4

public class ArraySum {
 int[] array;
 int sum, low, high;
 public ArraySum(int[] arr, int l, int h) {
 array=arr; sum=0; low=l; high=h;
 }
 //assume array.length%2=0
 public void calculate() {
 for(int i=low; i<high; i++)
 sum += array[i];
 }
 public int getResult() { return sum; }
 public static void main(String[] args)
 {
 int size; int[] array; //allocated (size) & initialized
 ArraySum asum = new ArraySum(array, 0, size);
 asum.calculate();
 int result = asum.getResult();
 }
}

© Vivek Kumar

Parallel Array Sum Implementation (1/6)
● Lets parallelize the

execution of “calculate”
method by implementing
Runnable interface
o This method is the

performance bottleneck
as array length grows
huge

● Step-1
o Implement

java.lang.Runnable
interface

5

public class ArraySum implements Runnable {
 int[] array;
 int sum, low, high;
 public ArraySum(int[] arr, int l, int h) {
 array=arr; sum=0; low=l; high=h;
 }
 //assume array.length%2=0
 public void calculate() {
 for(int i=low; i<high; i++)
 sum += array[i];
 }
 public int getResult() { return sum; }
 public static void main(String[] args)
 {
 int size; int[] array; //allocated (size) & initialized
 ArraySum asum = new ArraySum(array, 0, size);
 asum.calculate();
 int result = asum.getResult();
 }
}

© Vivek Kumar

Parallel Array Sum Implementation (2/6)
● Step-2

o Implement the method
“public void run()”

o This abstract method is
in Runnable interface (no
other methods there)

o For simplicity, we will
rename “calculate”
method in this example
to “run”
§ Note that run() method

is of void type
§ In next lecture we will

see how to return
results (or objects) from
Threads

6

public class ArraySum implements Runnable {
 int[] array;
 int sum, low, high;
 public ArraySum(int[] arr, int l, int h) {
 array=arr; sum=0; low=l; high=h;
 }
 //assume array.length%2=0
 public void run() {
 for(int i=low; i<high; i++)
 sum += array[i];
 }
 public int getResult() { return sum; }
 public static void main(String[] args)
 {
 int size; int[] array; //allocated (size) & initialized
 ArraySum asum = new ArraySum(array, 0, size);
 asum.calculate();
 int result = asum.getResult();
 }
}

© Vivek Kumar

Parallel Array Sum Implementation (3/6)
● Step-3

o Create two threads (t1 &
t2)

o java.lang.Thread class
o t1 will calculate the sum

of left half of the array
and t2 will calculate the
sum of right half of array
§ Before creating t1 and

t2 we must create
objects of Runnable
type that should be
passed to the Thread
constructor

7

public class ArraySum implements Runnable {
 int[] array;
 int sum, low, high;
 public ArraySum(int[] arr, int l, int h) {
 array=arr; sum=0; low=l; high=h;
 }
 //assume array.length%2=0
 public void run() {
 for(int i=low; i<high; i++)
 sum += array[i];
 }
 public int getResult() { return sum; }
 public static void main(String[] args)
 {
 int size; int[] array; //allocated (size) & initialized
 ArraySum left = new ArraySum(array, 0, size/2);
 ArraySum right = new ArraySum(array, size/2, size);
 Thread t1 = new Thread(left);
 Thread t2 = new Thread(right);

 }
}

© Vivek Kumar

Parallel Array Sum Implementation (4/6)
● Step-4

o Start both the threads by
calling the start() method in
Thread class

o JVM now allows this thread
to being its execution

o JVM calls the run() method
of this thread
§ Thread class also

implements Runnable
interface but has empty
bodied run()

§ When a Thread is created
using a Runnable object
(as in this example), then
run() implementation of
that Runnable object is
called

8

public class ArraySum implements Runnable {
 int[] array;
 int sum, low, high;
 public ArraySum(int[] arr, int l, int h) {
 array=arr; sum=0; low=l; high=h;
 }
 //assume array.length%2=0
 public void run() {
 for(int i=low; i<high; i++)
 sum += array[i];
 }
 public int getResult() { return sum; }
 public static void main(String[] args)
 {
 int size; int[] array; //allocated (size) & initialized
 ArraySum left = new ArraySum(array, 0, size/2);
 ArraySum right = new ArraySum(array, size/2, size);
 Thread t1 = new Thread(left);
 Thread t2 = new Thread(right);
 t1.start(); t2.start();

 }
}

© Vivek Kumar

Parallel Array Sum Implementation (5/6)
● Step-5

o Wait for both the
threads to complete
their execution (i.e. wait
for them to finish
execution of run
method)
§ join() method from

Thread class is used
for this purpose

§ join() method throws
checked exception
and hence main()
must declare that

9

public class ArraySum implements Runnable {
 int[] array;
 int sum, low, high;
 public ArraySum(int[] arr, int l, int h) {
 array=arr; sum=0; low=l; high=h;
 }
 //assume array.length%2=0
 public void run() {
 for(int i=low; i<high; i++)
 sum += array[i];
 }
 public int getResult() { return sum; }
 public static void main(String[] args)
 throws InterruptedException {
 int size; int[] array; //allocated (size) & initialized
 ArraySum left = new ArraySum(array, 0, size/2);
 ArraySum right = new ArraySum(array, size/2, size);
 Thread t1 = new Thread(left);
 Thread t2 = new Thread(right);
 t1.start(); t2.start();
 t1.join(); t2.join();

 }
}

© Vivek Kumar

Parallel Array Sum Implementation (6/6)
● Step-6

o Sum the partial results
from each threads to get
the final results

● What would happen if
you call t1.start()
followed by t1.join() and
then similarly for thread
t2?
o Although there are two

threads, still the program
is sequential!

● Can you write this same
program with more than
two threads?

10

public class ArraySum implements Runnable {
 int[] array;
 int sum, low, high;
 public ArraySum(int[] arr, int l, int h) {
 array=arr; sum=0; low=l; high=h;
 }
 //assume array.length%2=0
 public void run() {
 for(int i=low; i<high; i++)
 sum += array[i];
 }
 public int getResult() { return sum; }
 public static void main(String[] args)
 throws InterruptedException {
 int size; int[] array; //allocated (size) & initialized
 ArraySum left = new ArraySum(array, 0, size/2);
 ArraySum right = new ArraySum(array, size/2, size);
 Thread t1 = new Thread(left);
 Thread t2 = new Thread(right);
 t1.start(); t2.start();
 t1.join(); t2.join();
 int result = left.getResult() + right.getResult();
 }
}

© Vivek Kumar

Parallel Array Sum By Subclassing Thread
● Only three changes are

required
1. Instead of implementing

Runnable, now the
ArraySum class will
extend Thread class

2. Override the run()
method as Thread class
also has empty-body
implementation of run()

3. ArraySum objects are
themselves Thread
objects and hence now
no need to explicitly call
constructor of Thread
class

11

public class ArraySum extends Thread {
 int[] array;
 int sum, low, high;
 public ArraySum(int[] arr, int l, int h) {
 array=arr; sum=0; low=l; high=h;
 }
 //assume array.length%2=0
 @Override
 public void run() {
 for(int i=low; i<high; i++)
 sum += array[i];
 }
 public int getResult() { return sum; }
 public static void main(String[] args)
 throws InterruptedException {
 int size; int[] array; //allocated (size) & initialized
 ArraySum t1 = new ArraySum(array, 0, size/2);
 ArraySum t2 = new ArraySum(array, size/2, size);
 t1.start(); t2.start();
 t1.join(); t2.join();
 int result = t1.getResult() + t2.getResult();
 }
}

© Vivek Kumar

Runnable v/s Subclassing Thread
● Multiple inheritance is not allowed in Java hence if our

ArraySum class extends Thread then it cannot extend any
other class. By implementing Runnable our ArraySum can
easily extend any other class

● Subclassing is used in OOP to add additional feature,
modifying or improving behavior. If no modifications are
being made to Thread class then use Runnable interface

● Thread can only be started once. Runnable is better as
same object could be passed to different threads

● If just run() method has to be provided then extending
Thread class is an overhead for JVM

12
© Vivek Kumar

Question: Any Issues Below?
● What would happen if we

directly call run() method
from Runnable or Thread
object instead of start() and
join()?
o Neither a compilation or

runtime error
o No thread is created by JVM!
o Sequential execution
o Calling start() method is

mandatory !
13

.......

class MyClass1 implements Runnable {

}
class MyClass2 extends Thread {

}

.......
MyClass1 MyClass1Object = new MyClass1();
Thread t1 = new Thread(MyClass1Object);
t1.run()

MyClass2 t2 = new MyClass2();
t2.run();

© Vivek Kumar

Question: Any Issues Below?
● start() method cannot be

invoked more than once
o A thread can’t be restarted
o Exception generated at runtime

§ IllegalThreadStateException

● Although we can create
several threads with the same
runnable type object
o Advantage of implementing

Runnable over extending
Thread

14

.......

class MyClass1 implements Runnable {

}
class MyClass2 extends Thread {

}

.......
MyClass1 MyClass1Object = new MyClass1();
Thread t1 = new Thread(MyClass1Object);
t1.start();
t1.start();

MyClass2 t2 = new MyClass2();
t2.start();
t2.start();

© Vivek Kumar

Fibonacci Number Calculation

15

// Parallel Implementation of Fibonacci
public class Fibonacci implements Runnable {
 int result, n;
 public Fibonacci(int n) { this.n = n; }
 public static int fib(int n) {
 if(n<2) return n;
 else return fib(n-1) + fib(n-2);
 }
 public void run() {
 result = fib(n);
 }
 public int getResult() { return result; }
 public static void main(String[] args)
 throws InterruptedException {
 int n = 40;
 Fibonacci left = new Fibonacci(n-1);
 Fibonacci right = new Fibonacci(n-2);
 Thread t1 = new Thread(left);
 Thread t2 = new Thread(right);
 t1.start(); t2.start();
 t1.join(); t2.join();
 int result = left.getResult() + right.getResult();
 }
}

// Sequential Implementation of Fibonacci
public class Fibonacci {
 int result, n;
 public Fibonacci(int n) { this.n = n; }
 public static int fib(int n) {
 if(n<2) return n;
 else return fib(n-1) + fib(n-2);
 }
 public void calculate() {
 result = fib(n);
 }
 public int getResult() { return result; }
 public static void main(String[] args) {
 int n = 40;
 Fibonacci fib = new Fibonacci(n);
 int result = fib.getResult();
 }
}

Is this an efficient
implementation of

parallel Fibonacci ??

© Vivek Kumar

Multithreading in Socket Programming

16

● Sockets provide the
communication mechanism
between two computers that
are connected using a
network
o A two-way communication protocol
o Communication between two

processes

● A client program creates a
socket on its end of the
communication and attempts
to connect that socket to a
server

● When the connection is made,
the server creates a socket
object on its end of the
communication

● The client and the server can
now communicate by writing
to and reading from the socket

© Vivek Kumar

Multithreaded Server Application

17

import java.io.*;
import java.net.*;
public class Server {

 public static void main(String args[])
 throws IOException {
 /* create a server socket
 bound to the specified port 1234 */
 ServerSocket me = new ServerSocket(1234);
 /* Server is now listening
 for incoming client’s request */
 while (true) {
 /* Connection is established */
 Socket connection = me.accept();
 System.out.println("Connected");
 /* Spawn a thread for every
 connecting client */
 Thread t=new Thread(new Handler(connection));
 t.start();

}
}

}

class Handler implements Runnable {
 Socket connection;
 Handler(Socket connection) {
 this.connection = connection;
}

 public void run() throws IOException {
 DataOutputStream out = null;

try {
 out=new DataOutputStream(connection.getOutputStream());
 out.writeUTF("Hello Client!!");
 } finally {
 out.close();
 connection.close();
 }
}

}

© Vivek Kumar

18

import java.io.*;
import java.net.*;

public class Client {

 public static void main(String args[])
 throws IOException {
 String serverName = "localhost"; //or remote IP Address

int port = 1234; // should be same as used in server
 /* Connect to server that is already listening */
 Socket server = new Socket(serverName, port);
 System.out.println("Just connected to " +
 server.getRemoteSocketAddress());
 DataInputStream in = new
 DataInputStream(server.getInputStream());
 System.out.println("Server says " + in.readUTF());

in.close();
 /* close connection with server */

server.close();
}

}

Client Application
● Why our server

application was
missing the join()
for the threads it
spawned for
every new client
connection ?
o Will the server be

able to serve multiple
clients in parallel?

© Vivek Kumar

Some Other Methods in Thread
● static Thread currentThread()

o Returns a reference to the currently executing thread object
● long getId()

o Returns the identifier of this thread
● static void sleep(long millisec)

o Causes the currently executing thread to sleep (temporarily cease
execution) for the specified number of milliseconds

19
© Vivek Kumar

Scheduling Task Launch
● The classes Timer and TimerTask are part of the java.util

package
● Useful for

o performing a task after a specified delay
o performing a sequence of tasks at constant time intervals

20
© Vivek Kumar

Scheduling Task Launch
● java.util.Timer

o Delay the execution of a task until the specified time
● java.util.TimerTask

o Abstract class that implements Runnable
o Subclass TimerTask (similar to subclassing Thread) and provide a

concrete implementation of run() method

● Use Timer instance to schedule this TimerTask

21
© Vivek Kumar

22

import java.util.*;
public class Reminder {
 Timer timer;
 public Reminder(int seconds) {

timer = new Timer();
 timer.schedule(new RemindTask(), seconds*1000);

}

 class RemindTask extends TimerTask {
public void run() {

System.out.println("Time's up!");
 // Terminate the timer thread
 // or set the timer as daemon

timer.cancel();
}

}

 public static void main(String args[]) {
new Reminder(5);

 System.out.println("Task scheduled.");
}

}

Scheduling Task Launch
● The schedule method of a

timer can get as
parameters:
o Task, time
o Task, time, period
o Task, delay
o Task, delay, period

● A Timer thread can be
stopped in the following
ways:
o Apply cancel() on the timer
o Make the thread a daemon

© Vivek Kumar

23

How Timer is Different Than Sleep
● TimerTask can be canceled anytime
● Easy to create recurring (repeating) task
● Better code readability
● Cannot generate InterruptedException unlike

Thread.sleep
● More precise than Thread.sleep

© Vivek Kumar

Disadvantages of Multithreading

24

● It is hard to debug and
test a multithreaded
program

● Sometimes
unpredictable results
o Race conditions

§ Lecture 20

● Chances of deadlock
o Lecture 20

© Vivek Kumar

Next Lecture
● Thread pool in Java

o java.util.* classes specific to ThreadPool implementation

25

