
Lecture 19: Thread Pool
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE201: Advanced Programming

© Vivek Kumar

Last Lecture
● There are two ways to create your

own Thread object
o Implementing the Runnable

interface
o Subclassing the Thread class and

instantiating a new object of that
class

1
© Vivek Kumar

right.run();
Changes for using

only one thread along
with the main thread

Think Tasks, not Threads
● Tasks are logic unit of work
● Threads are mechanism by

which tasks can run
asynchronously

● E.g., for calculating
Fibonacci number (Lecture
18), each node in this tree
represents one task

● Tasks are lightweight than a
thread !
o Why ? 2

© Vivek Kumar

Mapping Tasks to Cores
● Generally

o # of tasks > # threads available
o parallel algorithm must map tasks to threads
o schedule independent tasks on separate threads (consider

computation graph)
o threads should have minimum interaction with one another

3
© Vivek Kumar

Thread Pool

4

● Thread-pool consists of a fixed number of threads
o Provided by the Java runtime

● User application creates “task” rather than threads
● These tasks are added to a task-pool
● Free threads from thread-pool takes out a task from task-pool and execute it

Fig. Source: http://www.geek-programmer.com/what-are-thread-pools-in-java/ © Vivek Kumar

Package java.util.concurrent

5

● Framework for
concurrent
programming

● In this course
we will only
introduce a
few basic
features of this
framework

ExecutorService Interface
● An ExecutorService is a group of thread objects (thread pool),

each running some variant of the following
o while (....) { get work and run it; }

● ExecutorService take responsibility for the threads they create
o User starts and shuts down ExecutorService
o ExecutorService starts and shut down threads

● Method execute(Runnable object)
o Accepts task as a Runnable type object that is executed by a thread in

thread pool
● Method shutdown()

o Thread pool terminates once all pre-submitted tasks are executed

6
© Vivek Kumar

Executors Class
● Provides factory and utility methods for ExecutorService
● Static method newFixedThreadPool(int num_threads)

o Creates a thread pool that reuses a fixed number of threads for task
execution

7
© Vivek Kumar

Let’s Revisit Our Parallel Array Sum
● ExecutorService methods:

o isTerminated()
§ Returns true if all tasks are

terminated following the
shutdown

o awaitTermination(long
timeout, TimeUnit unit)
throws
InterruptedExecption
§ Blocks until all tasks have

completed execution after a
shutdown request

● Important that you wait for all
tasks to terminate after a
shutdown request

8

public class ArraySum implements Runnable {
 int[] array;
 int sum, low, high;
 public ArraySum(int[] arr, int l, int h) {
 array=arr; sum=0; low=l; high=h;
 }
 //assume array.length%2=0
 public void run() {
 for(int i=low; i<high; i++)
 sum += array[i];
 }
 public int getResult() { return sum; }
 public static void main(String[] args)
 throws InterruptedException {
 int size; int[] array; //allocated (size) & initialized
 ExecutorService exec = Executors.newFixedThreadPool(2);
 ArraySum left = new ArraySum(array, 0, size/2);
 ArraySum right = new ArraySum(array, size/2, size);
 exec.execute(left); exec.execute(right);
 if(!exec.isTerminated()) {
 exec.shutdown();
 exec.awaitTermination(5L, TimeUnit.SECONDS);
 }
 int result = left.getResult() + right.getResult();
 }
}

© Vivek Kumar

Let’s Revisit Our Multithreaded Server
● Rather than creating a new

thread for every incoming
client connection, we will
instead create a new task
and submit it to thread pool
o No other changes to

Server.java or Client.java
● Now our server will not go

crazy even if several clients
are lined up simultaneously

9

import java.io.*; import java.net.*;
import java.util.concurrent.*;
public class Server {
 public static void main(String args[])
 throws IOException {
 /* create a server socket
 bound to the specified port 1234 */
 ServerSocket me = new ServerSocket(1234);
 /* Server is now listening
 for incoming client’s request */
 ExecutorService exec = Executors.newFixedThreadPool(2);
 while (true) {
 /* Connection is established */
 Socket connection = me.accept();
 System.out.println("Connected");
 Runnable task = new ConnectionHandler(connection);
 /* new Thread(task).start(); */
 exec.execute(task);

}
}

}

© Vivek Kumar

How to Improve Parallel Fibonacci?
● We know that there is a lot

of parallelism and hence its
not efficient to just create
two tasks, i.e., one task for
fib(n-1) and another task for
fib(n-2)

● Every node in this tree can
be computed in parallel

● Recursive divide and
conquer application!

10
© Vivek Kumar

ForkJoinPool
● Designed to support a common need

o Recursive divide and conquer pattern
o For small problems (below cutoff threshold), execute sequentially
o For larger problems

§ Define a task for each subproblem
§ Library provides

• A Thread manager, called a ForkJoinPool
• Methods to send your subtask objects to the pool to be run, and your call waits

until they are done
• The pool handles the multithreading well

● The “thread manager”
o Used when calls are made to RecursiveTask’s methods fork(),

invokeAll(), etc.

11
© Vivek Kumar

Parallel Fibonacci Using ForkJoinPool

12

● Step-1
o Fibonacci class should

extend the class
RecursiveAction

o RecursiveAction
represents a task that
doesn’t return any result

import java.util.concurrent.*;

public class Fibonacci extends RecursiveAction {
 int n, result;
 public Fibonacci(int _n, int _r) { n=_n; result=_r; }

}

© Vivek Kumar

Parallel Fibonacci Using ForkJoinPool

13

● Step-2
o Implement the method

“public void compute()”
§ Similar to run() method

o Computes the recursive
divide and conquer task

o Similar to Runnable
implementation of Fibonacci,
create the two tasks. One for
calculating fib(n-1) while the
other for calculating fib(n-2)

import java.util.concurrent.*;

public class Fibonacci extends RecursiveAction {
 int n, result;
 public Fibonacci(int _n, int _r) { n=_n; result=_r; }

 public void compute() {
 if(n<2) {
 this.result = n;
 return;
 }
 Fibonacci left = new Fibonacci(this.n-1);
 Fibonacci right = new Fibonacci(this.n-2);

 }

}

© Vivek Kumar

Parallel Fibonacci Using ForkJoinPool

14

● Step-3
o Start the first task (“left”)

asynchronously
o Calling the fork() method on

one of the task is similar to
calling start() on a thread.

o However, fork() does not
start any new thread but
rather adds this task to the
task pool
§ Similar to calling execute()

from ExecuterService

import java.util.concurrent.*;

public class Fibonacci extends RecursiveAction {
 int n, result;
 public Fibonacci(int _n, int _r) { n=_n; result=_r; }

 public void compute() {
 if(n<2) {
 this.result = n;
 return;
 }
 Fibonacci left = new Fibonacci(this.n-1);
 Fibonacci right = new Fibonacci(this.n-2);
 left.fork();

 }

}

© Vivek Kumar

Parallel Fibonacci Using ForkJoinPool

15

● Step-4
o Start the second task

(“right”) sequentially, i.e. on
the current thread

o Why not start this also with
fork() ?
§ Not an error and you can

definitely do so
§ However, the current

thread is already done with
current task (the compute()
method) hence it can be
reused to directly compute
the “right” task

import java.util.concurrent.*;

public class Fibonacci extends RecursiveAction {
 int n, result;
 public Fibonacci(int _n, int _r) { n=_n; result=_r; }

 public void compute() {
 if(n<2) {
 this.result = n;
 return;
 }
 Fibonacci left = new Fibonacci(this.n-1);
 Fibonacci right = new Fibonacci(this.n-2);
 left.fork();
 right.compute();

 }

}

© Vivek Kumar

Parallel Fibonacci Using ForkJoinPool

16

● Step-5
o Once the “right” task

completes, compute method
should wait for all the
asynchronous tasks spawned
inside it (i.e. “left” task)

o left.join() is a blocking
operation and will return only
when “left” has terminated
§ Similar to thread.join() but

this waits for a “task” to
terminate rather than a
“thread”

o Sum the partial results

import java.util.concurrent.*;

public class Fibonacci extends RecursiveAction {
 int n, result;
 public Fibonacci(int _n, int _r) { n=_n; result=_r; }

 public void compute() {
 if(n<2) {
 this.result = n;
 return;
 }
 Fibonacci left = new Fibonacci(this.n-1);
 Fibonacci right = new Fibonacci(this.n-2);
 left.fork();
 right.compute();
 left.join();
 this.result = left.result + right.result;
 }

}

© Vivek Kumar

Parallel Fibonacci Using ForkJoinPool

17

● Step-6
o Create a ForkJoinPool type

thread pool with fixed number of
threads

o Create the root task (see the
binary tree representation for
Fibonacci)

o Add this root task in the task
pool
§ pool.invoke
§ Blocking operation and doesn’t

return until all tasks are
terminated

o A free thread from thread pool will
execute this task and recursively
create new tasks that will in turn
be added to the task pool

import java.util.concurrent.*;

public class Fibonacci extends RecursiveAction {
 int n, result;
 public Fibonacci(int _n, int _r) { n=_n; result=_r; }

 public void compute() {
 if(n<2) {
 this.result = n;
 return;
 }
 Fibonacci left = new Fibonacci(this.n-1);
 Fibonacci right = new Fibonacci(this.n-2);
 left.fork();
 right.compute();
 left.join();
 this.result = left.result + right.result;
 }
 public static void main(String[] args) {
 ForkJoinPool pool = new ForkJoinPool(2);
 Fibonacci task = new Fibonacci(40);
 pool.invoke(task);
 int result = task.result;
 }
}

© Vivek Kumar

Using RecursiveTask<T> to Return Value

18

● RecursiveTask<T> is
better suited in scenarios
where there is a need to
return results from each
task (same return type for
all tasks)

● Very minimal changes
required to our Fibonacci
program to use this
feature

import java.util.concurrent.*;

public class Fibonacci extends RecursiveTask<Integer> {
 int n;
 public Fibonacci(int _n) { n=_n; }

 public Integer compute() {
 if(n<2) return n;

 Fibonacci left = new Fibonacci(this.n-1);
 Fibonacci right = new Fibonacci(this.n-2);
 left.fork();
 return right.compute() + left.join();
 }
 public static void main(String[] args) {
 ForkJoinPool pool = new ForkJoinPool(2);
 Fibonacci task = new Fibonacci(40);
 int result = pool.invoke(task);
 }
}

© Vivek Kumar

Performance of Our Parallel Fibonacci
● Increasing the

thread pool size
decreases the
execution time
o 4 core processor

19

Total Threads in ForkJoinPool

© Vivek Kumar

Too Many Tasks Hamper Performance
● Although, tasks are

lightweight than threads, too
many tasks can also hamper
the performance

● Use some cut off in your
application to stop creation of
tasks beyond certain
threshold
o When computation become too

small, stop creation of any new
task

● Fibonacci on left even with a
single thread will run
significantly faster than the
Fibonacci shown on slide-16

20

import java.util.concurrent.*;

public class Fibonacci extends RecursiveTask<Integer> {
 int n;
 static int threshold = 10;
 public Fibonacci(int _n) { n=_n; }
 private int sequential(int n) {
 if(n<2) return n;
 else return sequential(n-1) + sequential(n-2);
 }
 public Integer compute() {
 if(n<threshold) return sequential(n);

 Fibonacci left = new Fibonacci(this.n-1);
 Fibonacci right = new Fibonacci(this.n-2);
 left.fork();
 return right.compute() + left.join();
 }
 public static void main(String[] args) {
 ForkJoinPool pool = new ForkJoinPool(2);
 Fibonacci task = new Fibonacci(40);
 int result = pool.invoke(task);
 }
}

© Vivek Kumar

Thread Pool Shutdown
● For some type of parallel

applications (e.g.,
searching element in a
huge array) you would like
to stop creating tasks once
the goal is found
o Speculative parallelism

● public void shutdownNow()
o Stops everything, i.e.,

creation of new tasks, all
running tasks and
previously submitted tasks

o Throws an unchecked
exception
CancellationException upon
cancellation 21

import java.util.concurrent.*;

public class Search extends RecursiveAction<...> {

 public void compute() {
 if(this.searchItemIsFound()) {
 pool.shutdownNow();
 }

 Search left = new Search(...);
 Search right = new Search(...);
 left.fork();
 return right.compute() + left.join();
 }
 public static void main(String[] args) {
 ForkJoinPool pool = new ForkJoinPool(2);
 Search task = new Search(..., pool);
 try {
 pool.invoke(task);
 }
 catch(CancellationException e) {
 System.out.println(“Goal is found, pool aborted”);
 }
 }
}

© Vivek Kumar

Measures of parallel performance
● Speedup = Tserial/Tparallel
● Parallel efficiency = Tserial/(pTparallel)

Fig. source: http://www.drdobbs.com/cpp/going-superlinear/206100542

Amdahl’s Law
● Amdahl’s law

23

Gene M. Amdahl

If 50% of your application is parallel and 50%
is serial, you can’t get more than a factor of 2
speedup, no matter how many processors it
runs on.

Amdahl’s Law

24

proecssor
s

T_Parallel = Tseq + T’par
With infinite processors, T’par ~ 0 (theoretically) => T_Parallel = Tseq

Next Lecture
● Mutual exclusion

25

