CSE201: Advanced Programming

Lecture 19: Thread Pool

Vivek Kumar

Computer Science and Engineering
I1IT Delhi

VVVVVVVVVV

Last Lecture

[There_are two ways to create your
own Thread object

0 Implementing the Runnable
interface

o Subclassing the Thread class and
|r;stant|at|ng a new object of that
class

public class ArraySum extends Thread {
int[] array;
int sum, low, high;
public ArraySum(int[] arr, int 1, int h) {
array=arr; sum=0; low=1l; high=h;
¥
//assume array.length%2=0
@Override
public void run() {
for(int i=low; i<high; i++)
sum += array[i];
}
public int getResult() { return sum; }
public static void main(String[] args)
throws InterruptedException {
int size; int[] array; //allocated (size) & initialized
ArraySum t1 = new ArraySum(array, 0, size/2);
ArraySum t2 = new ArraySum(array, size/2, size);
tl.start(); t2.start();
tl.join(); t2.join();
int result = t1.getResult() + t2.getResult();

public class ArraySum implements Runnable {

int[] array;
int sum, low, high;
public ArraySum(int[] arr, int 1, int h) {
array=arr; sum=0; low=1l; high=h;
}
//assume array.length%2=0
public void run() {
for(int i=low; i<high; i++)
sum += array[i];
}
public int getResult() { return sum; }
public static void main(String[] args)
throws InterruptedException {
int size; int[] array; //allocated (size) & initialized
ArraySum left = new ArraySum(array, 0, size/2);
ArraySum right = new ArraySum(array, size/2, size);

Thread t1 = new Thread(left);

——— Changes for using
tl.start(); “2—stars+ right.run(); | only one thread along
tl.join(); 2ot with the main thread
int result = left.getResult() + right.getResult();

}

Vivek Kumar

Multiple inheritance is not allowed in Java hence if our
ArraySum class extends Thread then it cannot extend any
other class. By implementing Runnable our ArraySum can
easily extend any other class

Subclassing is used in OOP to add additional feature,
modifying or improving behavior. If no modifications are
being made to Thread class then use Runnable interface

Thread can only be started once. Runnable is better as
same object could be passed to different threads

If just run() method has to be provided then extendihg
Thread class is an overhead for JVM

Think Tasks, not Threads

fib(4) o

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0
1b (1) 1().

© Vivek Kumar

Tasks are logic unit of work

Threads are mechanism by
which tasks can run
asynchronously

E.g., for calculating
Fibonacci number (Lecture
18), each node in this tree
represents one task

Tasks are lightweight than a
thread !

o Why? 5

Mapping Tasks to Cores

® Generally
o #oftasks = threads available
o parallel algorithm must map tasks to threads
o schedule independent tasks on separate threads (consider
computation graph)
o threads should have minimum interaction with one another

© Vivek Kumar

Thread Pool

Thread pool

Task Queue Thread 1

Thread 2

Thread 3

Task Z
Partially completed tasks

® Thread-pool consists of a fixed number of threads
o Provided by the Java runtime

® User application creates “task” rather than threads
® These tasks are added to a task-pool

® Free threads from thread-pool takes out a task from task-pool and execute it
4

Fig. Source: http://www.geek-programmer.com/what-are-thread-pools-in-java/ © Vivek Kumar

Package java.util.concurrent

java.util.concurrent |

| v |
| «m!erface» — !
: e Exsculors Completnon ~‘
| | v j| T Service
I winterface» — —é_ o _! : : :
: Callable e — — —— |- -|=—~ «interfacen» = |
| 11 | Executor | | F===
| 11 I _l_;I v |
I «interface» b ! Executor — o —!
I = — = —— 401 | Completion f—————————
| ThreadFactory 1 : Service :
| (|
| vl 1 I | -
I v | I . «interface» Y E |
I «interface» — | =====31 ExecutorService - 1 .)
— = Future [—————— = ———— -t | «interface»
| | BlockingQueue
| ﬁx |
| |
4 /I_ - N 1= -7 [AbstractExecutor
oz N N
Y Fodom— Y| 'm===={ dnterisces Service
FutureTask |~ orkJoin—-—r = _ _ _ _ _ . Scheduled
Task | ExecutorService
|
/4 R . A
| | | |
Recursive Recursnve— - |_ _______] ForkJoin ThreadPool [K>——
Action Task T I Pool Executor <>—|
|
=5 |
CountD p— I v | «interfacen
ountDown yclic Phaser Semaphore Exchanger |~ | - Rejected
Latch Barrier | ForkJoin ExecutionHandler
T T T T T | WorkerThread
| | | | | |
I e e e e ScheduledThread
V PoolExecutor

TimeUnit

«enumeration»

© uml-diagrams.org

® Framework for

concurrent
programming

In this course
we will only
Introduce a
few basic
features of this
framework

ExecutorService Interface

An ExecutorService is a group of thread objects (thread pool),
each running some variant of the following

o while (....) { get work and run it; }

ExecutorService take responsibility for the threads they create
o User starts and shuts down ExecutorService
o ExecutorService starts and shut down threads

Method execute(Runnable object)

o Accepts task as a Runnable type object that is executed by a thread in
thread pool

Method shutdown ()
o Thread pool terminates once all pre-submitted tasks are executed

6

© Vivek Kumar

Executors Class

® Provides factory and utility methods for ExecutorService

® Static method newFixedThreadPool(int num_threads)

o Creates a thread pool that reuses a fixed number of threads for task
execution

© Vivek Kumar

Let’s Revisit Our Parallel Array Sum

public class ArraySum implements Runnable {

int[] array;
int sum, low, high;
public ArraySum(int[] arr, int 1, int h) {
array=arr; sum=0; low=1; high=h;
}
//assume array.length%2=0
public void run() {
for(int i=low; i<high; i++)
sum += array[i];
}
public int getResult() { return sum; }
public static void main(String[] args)
throws InterruptedException {
int size; int[] array; //allocated (size) & initialized
ExecutorService exec = Executors.newFixedThreadPool(2);
ArraySum left = new ArraySum(array, 0, size/2);
ArraySum right = new ArraySum(array, size/2, size);
exec.execute(left); exec.execute(right);
if(!exec.isTerminated()) {
exec.shutdown();
exec.awaitTermination(5L, TimeUnit.SECONDS);

}
int result = left.getResult() + right.getResult();

© ViveK Kuma

® ExecutorService methods:

o 1isTerminated()

= Returns true if all tasks are
terminated following the
shutdown

o awaitTermination(long

timeout, TimeUnit unit)

throws

InterruptedExecption

= Blocks until all tasks have

completed execution after a
shutdown request

® Important that you wait for all
tasks to terminate after a
shutdown request

Let’s Revisit Our Multithreaded Server

import Java.util concarrent.e; ® Rather than creating a new
pum;zbiisztzizze;oi({j main(String args[1) ' thlread for eve.ry Incomlr..]g
L rente o erven o oM tomxception 4 client connection, we will
Serversocket me < new ServerSocket (1234); instead create a new task
o eoming i et < and submit it to thread pool

ExecutorService exec = Executors.newFixedThreadPool(2);

while (true) { o No other changes to
/* Connection is established */ Serverjava Or Cllentjava

Socket connection = me.accept();
System.out.println("Connected");

Runnable task = new ConnectionHandler(connection); . NOW our server W|” nOt go

/* new Thread(task).start(); */

exec. execute(task); crazy even if several clients
) are lined up simultaneously

© ViveK Kumar

How to Improve Parallel Fibonacci?

® Ve know that there is a lot

fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)

© Vivek Kumar

of parallelism and hence its
not efficient to just create
two tasks, i.e., one task for
fib(n-1) and another task for
fib(n-2)

Every node in this tree can
be computed in parallel

Recursive divide and
conquer application!
10

ForkJoinPool

® Designed to support a common need
o Recursive divide and conquer pattern
o For small problems (below cutoff threshold), execute sequentially
o Forlarger problems
= Define a task for each subproblem

= Library provides
. A Thread manager, called a ForkJoinPool

. Methods to send your subtask objects to the pool to be run, and your call waits
until they are done

. The pool handles the multithreading well

® The “thread manager”

o Used when calls are made to RecursiveTask’'s methods fork(),
invokeAll(), etc.

11

© Vivek Kumar

Parallel Fibonacci Using ForkJoinPool

import java.util.concurrent.*; . Step_1
ublic class Fibonacci extends RecursiveAction . .
’ int n, r‘e:ult; rends ¥ Aet { O FlbOnaCCI ClaSS ShOUId
public Fibonacci(int _n, int _r) { n=_n; result=_r; } extend the ClaSS
RecursiveAction

o RecursiveAction
represents a task that
doesn’t return any result

12

© ViveK Kumar

Parallel Fibonacci Using ForkJoinPool

import java.util.concurrent.*;

public class Fibonacci extends RecursiveAction {

int n, result;
public Fibonacci(int _n, int _r) { n=_n; result=_r; }

public void compute() {
if(n<2) {
this.result = n;
return;

}

Fibonacci left = new Fibonacci(this.n-1);
Fibonacci right = new Fibonacci(this.n-2);

© ViveK Kuma

® Step-2

o Implement the method
“public void compute()”

= Similar to run() method

o Computes the recursive
divide and conquer task

o Similar to Runnable
implementation of Fibonacci,
create the two tasks. One for
calculating fib(n-1) while the
other for calculating fib(n-2)

13

Parallel Fibonacci Using ForkJoinPool

import java.util.concurrent.*; . Step_3
Pt e reatey e teersermon £ o Start the first task (“left”)
public Fibonacci(int _n, int _r) { n=_n; result=_r; } asynchronously
" ey (O o Calling the fork() method on
roresut =N one of the task is similar to
gibonacci left = new Fibonacci(this.n-1); (:Ealllr]EJ E;tart() ona tf]rEBEi(j.

Fibonacci right = new Fibonacci(this.n-2);

Left. fork(); o However, fork() does not

start any new thread but
rather adds this task to the
task pool

= Similar to calling execute()
from ExecuterService

14

© ViveK Kumar

Parallel Fibonacci Using ForkJoinPool

import java.util.concurrent.*;

public class Fibonacci extends RecursiveAction {
int n, result;
public Fibonacci(int _n, int _r) { n=_n; result=_r; }

public void compute() {
if(n<2) {
this.result = n;
return;

}

Fibonacci left = new Fibonacci(this.n-1);
Fibonacci right = new Fibonacci(this.n-2);
left.fork();

right.compute();

© ViveK Kuma

® Step4

o Start the second task
(“right”) sequentially, i.e. on
the current thread

o Why not start this also with
fork() ?

= Not an error and you can
definitely do so

= However, the current
thread is already done with
current task (the compute()
method) hence it can be
reused to directly compute

the “right” task 15

Parallel Fibonacci Using ForkJoinPool

import java.util.concurrent.*;
public class Fibonacci extends RecursiveAction {
int n, result;

public Fibonacci(int _n, int _r) { n=_n; result=_r; }

public void compute() {

if(n<2) {
this.result = n;
return;

}

Fibonacci left = new Fibonacci(this.n-1);
Fibonacci right = new Fibonacci(this.n-2);
left.fork();

right.compute();

left.join();

this.result = left.result + right.result;

© ViveK Kuma

Step-5

O

Once the “right” task
completes, compute method
should wait for all the
asynchronous tasks spawned
inside it (i.e. “left” task)
left.join() is a blocking
operation and will return only
when “left” has terminated

= Similar to thread.join() but
this waits for a “task” to
terminate rather than a
“thread”

Sum the partial results
16

Parallel Fibonacci Using ForkJoinPool

import java.util.concurrent.*;
public class Fibonacci extends RecursiveAction {
int n, result;

public Fibonacci(int _n, int _r) { n=_n; result=_r; }

public void compute() {

if(n<2) {
this.result = n;
return;

}

Fibonacci left = new Fibonacci(this.n-1);
Fibonacci right = new Fibonacci(this.n-2);
left.fork();
right.compute();
left.join();
this.result = left.result + right.result;
}
public static void main(String[] args) {
ForkJoinPool pool = new ForkJoinPool(2);
Fibonacci task = new Fibonacci(40);
pool.invoke(task);
int result = task.result;

© ViveK Kuma

Step-6

O

Create a ForkJoinPool type
thread pool with fixed number of
threads

Create the root task (see the
binary tree representation for
Fibonacci)

Add this root task in the task
pool

. pool.invoke

= Blocking operation and doesn'’t
return until all tasks are
terminated

A free thread from thread pool will
execute this task and recursively
create new tasks that will in turn

be added to the task pool
17

Using RecursiveTask<T> to Return Value

import java.util.concurrent.*;

public class Fibonacci extends RecursiveTask<Integer> {
int n;
public Fibonacci(int _n) { n=_n; }

public Integer compute() {
if(n<2) return n;

Fibonacci left = new Fibonacci(this.n-1);
Fibonacci right = new Fibonacci(this.n-2);
left.fork();
return right.compute() + left.join();

}

public static void main(String[] args) {
ForkJoinPool pool = new ForkJoinPool(2);
Fibonacci task = new Fibonacci(40);
int result = pool.invoke(task);

}
}

© ViveK Kuma

® RecursiveTask<T> is
better suited in scenarios
where there is a need to
return results from each
task (same return type for
all tasks)

Very minimal changes
required to our Fibonacci
program to use this
feature

18

Performance of Our Parallel Fibonacci

® Increasing the

4 thread pool size
3'2 decreases the
25 execution time
2 _ o 4 core processor
“ Time (seconds)
1.5
1
0.5

0 i — — —
1 2 3 4
Total Threads in ForkJoinPool

19

© Vivek Kumar

Too Many Tasks Hamper Performance

import java.util.concurrent.*;

public class Fibonacci extends RecursiveTask<Integer> {
int n;
static int threshold = 10;
public Fibonacci(int _n) { n=_n; }
private int sequential(int n) {
if(n<2) return n;
else return sequential(n-1) + sequential(n-2);

}
public Integer compute() {

if(n<threshold) return sequential(n);

Fibonacci left = new Fibonacci(this.n-1);
Fibonacci right = new Fibonacci(this.n-2);
left.fork();
return right.compute() + left.join();

}

public static void main(String[] args) {
ForkJoinPool pool = new ForkJoinPool(2);
Fibonacci task = new Fibonacci(40);
int result = pool.invoke(task);

}

}

© ViveK Kuma

® Although, tasks are
lightweight than threads, too
many tasks can also hamper
the performance

® Use some cut off in your
application to stop creation of
tasks beyond certain
threshol
o When computation become too

small, stop creation of any new
task

® Fibonacci on left even with a
single thread will run
S|_%n|f|can_tly faster than the
Fibonacci shown on slide-16

20

Thread Pool Shutdown

import java.util.concurrent.*;

public class Search extends RecursiveAction<...> {

public void compute() {

}

if(this.searchItemIsFound()) {
pool.shutdownNow();

}

Search left = new Search(...);

Search right = new Search(...);
left.fork();

return right.compute() + left.join();

public static void main(String[] args) {

}
}

ForkJoinPool pool = new ForkJoinPool(2);
Search task = new Search(..., pool);

try {
pool.invoke(task);
}

catch(CancellationException e) {

System.out.println(“Goal is found, pool aborted”);

}

© ViveK Kuma

® For some type of parallel
applications (e.g.,
searching elementin a
huge array) you would like
to stop creating tasks once
the goal is found

o Speculative parallelism

® public void shutdownNow()

o Stops everythingt;, l.e.,
creation of new tasks, all
running tasks and
previously submitted tasks

o Throws an unchecked

exception _
CancellationException upon
cancellation 01

Measures of parallel performance

® Speedup = Tgerial/Tparallel
® Parallel efficiency = Ty ia/(PT paraliel)

Parallel
Speedup

Superlinear .’

- Typical
Success

Sublinear

—» # Processors

Negative

Fig. source: http://www.drdobbs.com/cpp/going-superlinear/206100542

Amdahl’s Law

/If 50% of your application is parallel and 50%
is serial, you can’t get more than a factor of 2
speedup, no matter how many processors it
._runs on.

23

Amdahl’s Law

|-(-— Tseq 4)-'-4 Tpar)-I
| |
I 1

| | |
1 1

—» TIME

SEQUENTIAL PARALLELIZABLE

SEQUENTIAL

- Expecting on
multiple

Proecssor
S

T'par
’. -<

T Parallel = Tseq + T'par

With infinite processors, T'par ~ O (theoretically) => T Parallel = Tseq 24

Next Lecture

® Mutual exclusion

25

