
Lecture 20: Mutual Exclusion
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE201: Advanced Programming

© Vivek Kumar

Last Lecture

1

● Think tasks, not threads
o Tasks are logical unit of work and are lightweight than thread

© Vivek Kumar

Today’s Lecture

2

● Race conditions
● Mutual exclusion
● Monitor locks
● Memory consistency
● Producer consumer problem

© Vivek Kumar

Race Condition

3

Put green pieces Put red piecesHow can we have
alternating colors?

© Vivek Kumar

Mutual Exclusion

4

● Critical section: a block of code that access shared
modifiable data or resource that should be operated on
by only one thread at a time

● Mutual exclusion: a property that ensures that a
critical section is only executed by a thread at a time.
o Otherwise it results in a race condition!

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor
Programming” by Maurice Herlihy and Nir Shavit 4

time

● A thread A is (formally) a sequence a0, a1, ... of
events
o Notation: a0 è a1 indicates order

a0

Threads

a1 a2 …

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor
Programming” by Maurice Herlihy and Nir Shavit

5

● Assign to shared variable
● Assign to local variable
● Invoke method
● Return from method
● Lots of other things …

Example Thread Events

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor
Programming” by Maurice Herlihy and Nir Shavit

6

time

time

● Thread A

● Thread B

Concurrent Execution Over Multiple Threads

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor
Programming” by Maurice Herlihy and Nir Shavit

7

time

Interleavings

● Events of two or more threads
o Interleaved
o Not necessarily independent (why?)

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor
Programming” by Maurice Herlihy and Nir Shavit

8

Question
● What will be the output of

this program?
o Race on counter!
o Buggy code and you will see

different answers in different
runs

9

class Counter implements Runnable {
 int counter = 0;

 public void run() { counter++; }
 public static void main(String[] args)
 throws InterruptedException {
 ExecutorService exec =
 Executors.newFixedThreadPool(2);

 Counter task = new Counter();
 for(int i=0; i<1000; i++) {
 exec.execute(task);
 }

 if(!exec.isTerminated()) {
 exec.shutdown();
 exec.awaitTermination(5L,TimeUnit.SECONDS);
 }

 System.out.println(task.counter);
 }
}

© Vivek Kumar

Implementing Mutual Exclusion
● Critical section

o The synchronized
methods (or block) define
the critical sections

o By using synchronized
keyword we achieved
mutual exclusion
§ Now let’s analyze this

10

class Counter implements Runnable {
 int counter = 0;
 // Both the versions of run method below is correct
 public synchronized void run() { counter++; }
 /* public void run() { synchronized(this) {counter++;} } */
 public static void main(String[] args)
 throws InterruptedException {
 ExecutorService exec =
 Executors.newFixedThreadPool(2);

 Counter task = new Counter();
 for(int i=0; i<1000; i++) {
 exec.execute(task);
 }

 if(!exec.isTerminated()) {
 exec.shutdown();
 exec.awaitTermination(5L,TimeUnit.SECONDS);
 }

 System.out.println(task.counter);
 }
}

© Vivek Kumar

Monitors
● Each object has a “monitor” that is a

token used to determine which
application thread has control of a
particular object instance

● In execution of a synchronized method
(or block), access to the object monitor
must be gained before the execution

● Access to the object monitor is queued
● Entering a monitor is also referred to as

locking the monitor, or acquiring
ownership of the monitor

● If a thread A tries to acquire ownership
of a monitor and a different thread has
already entered the monitor, the current
thread (A) must wait until the other
thread leaves the monitor

11
© Vivek Kumar

Analyzing our Counter Increment Example

12

counter++;

run()

● Only one thread
can get the “key”
to enter the “run”
method i.e., take
a lock on monitor

● Rest all threads
will be queued to
get the lock on
monitor

● Note: There is
no guarantee for
fairness, i.e.
longest waiting
thread need not
always get the
lock first

Static Synchronized Methods
● Marking a static method

as synchronized,
associates a monitor
with the class itself

● The execution of
synchronized static
methods of the same
class is mutually
exclusive

13

class Counter implements Runnable {
 static int counter = 0;

 public synchronized static void increment() {counter++;}

 public void run() { increment(); }
 public static void main(String[] args)
 throws InterruptedException {
 ExecutorService exec =
 Executors.newFixedThreadPool(2);

 Counter task = new Counter();
 for(int i=0; i<1000; i++) {
 exec.execute(task);
 }

 if(!exec.isTerminated()) {
 exec.shutdown();
 exec.awaitTermination(5L,TimeUnit.SECONDS);
 }

 System.out.println(Counter.counter);
 }
}

© Vivek Kumar

We are Still Missing Something…
● This program will

never terminate
● Using synchronized

is just one part of the
perfect solution

● Although there is no
race on shared
variables counter
and color, the
value of counter
and color that a
thread begins with
may not be its last
updated value

14

class Counter implements Runnable {
 static int counter = 0;
 static int turn = RED; //finals RED=0 and GREEN=1
 int me, other;
 public Counter(int c1, int c2) { me=c1; other=c2; }
 synchronized static void update(int me, int other) {
 if(counter<MAX && turn==me) {
 counter++; turn=other;
 }
 }
 public void run() {
 while(counter < MAX) {
 if(turn == me) {
 update(me, other);
 }
 }
 }
 public static void main(String args[])throws InterruptedException{
 Counter task1 = new Counter(RED, GREEN);
 Counter task2 = new Counter(GREEN, RED);
 Thread t1 = new Thread(task1); Thread t2 = new Thread(task2);
 t1.start(); t2.start(); t1.join(); t2.join();
 }
}

© Vivek Kumar

Memory Consistency Issue (1/2)
● Modern computing systems uses

multicore processors
● Each core has its own local cache
● For faster data access, memory

referenced by a CPU is first copied
from main memory (RAM) onto its
local cache

● The updated memory content on
cache is not immediately written
back to RAM
o This memory address might be

referenced again in near future,
hence immediately writing the cache
content to RAM can hamper
performance 15Fig. source: http://tutorials.jenkov.com/java-concurrency/volatile.html

© Vivek Kumar

Memory Consistency Issue (2/2)
● Imagine Counter example has two

threads in its thread pool – Thread
1 on CPU1 and Thread 2 on CPU2

● Thread 1 increments counter from
0 to 1. This updated value resides
on the cache of CPU1 and might
not be immediately written back to
the RAM

● Thread 2 now gets the chance to
update the counter. It fetches the
counter content from RAM but this
is the old value (=0) and not the
last updated value (=1)

● This is memory consistency error!

16

1

Fig. source: http://tutorials.jenkov.com/java-concurrency/volatile.html
© Vivek Kumar

The Correct Version of Counter Code
● Declare the counter as

“volatile”
● Indication to JVM for

storing the value of
counter & color on RAM
after every update to it

● With this each thread will
always get the latest
value of the counter &
color

17

class Counter implements Runnable {
 volatile static int counter = 0;
 volatile static int turn = RED;

}

© Vivek Kumar

Creating an Object Lock
● We can also pass any

object instance to
synchronized

18

class Counter implements Runnable {
 volatile int counter = 0;

 private Object lock = new Object();
 public void run() {
 synchronized(lock) {
 counter++;
 }
 }

}

© Vivek Kumar

Monitor Locks are Reentrant

19

● Both value() and run() are
synchronized methods

● Monitor locks are reentrant in
Java
o Same thread can recursively

take the same lock
● Once a thread has taken a

monitor lock then any further
request by this same thread to
reacquire the same monitor
lock is redundant

● Monitor lock is released only
after exiting the oldest
synchronized block

class Counter implements Runnable {
 volatile int counter = 0;

 public synchronized int value() { return counter; }

 public synchronized void run() {
 if(value() < 100) {
 counter++;
 }
 }

}

© Vivek Kumar

Demerits of Monitor Lock
● Does not guarantee fairness

o Lock might not be given to the longest waiting thread

● Might lead to starvation
o A thread can indefinitely hold the monitor lock for doing some big

computation while other threads keep waiting to get this monitor
lock

o Not possible to interrupt the thread who owns the lock
o Not possible for a thread to decline waiting for the lock if its

unavailable

20
© Vivek Kumar

The Producer Consumer Problem
● We need to synchronize between transactions, for

example, the consumer-producer scenario

21

Wait and Notify
● Allows two threads to cooperate
● Based on a single shared lock object

o Marge put a cookie wait and notify Homer
o Homer eat a cookie wait and notify Marge
o Marge put a cookie wait and notify Homer
o Homer eat a cookie wait and notify Marge

22

The wait() Method
● The wait() method is part of the class java.lang.Object
● It requires a lock on the object’s monitor to execute
● It must be called from a synchronized method, or from a

synchronized segment of code
● wait() causes the current thread to relinquish the CPU and

wait until another thread invokes the notify() method or the
notifyAll() method for this object

● Upon call for wait(), the thread releases ownership of this
monitor and waits until another thread notifies the waiting
threads of the object

23

Wait/Notify Sequence

1. synchronized(lock){
2. lock.wait(); 4. produceResource()

3. synchronized(lock) {

5. lock.notify();
6.}

9. consumeResource();
10. }

Consumer Producer

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){
2. lock.wait(); 4. produceResource()

3. synchronized(lock) {

5. lock.notify();
6.}

7. Reacquire lock
8. Return from wait()

9. consumeResource();
10. }

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){
2. lock.wait();

5. lock.notify();
6.}

7. Reacquire lock
8. Return from wait()

9. consumeResource();
10. }

4. produceResource()
3. synchronized(lock) {

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){
2. lock.wait();

5. lock.notify();
6.}

7. Reacquire lock
8. Return from wait()

9. consumeResource();
10. }

4. produceResource()
3. synchronized(lock) {

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){
2. lock.wait();

5. lock.notify();
6.}

7. Reacquire lock
8. Return from wait()

9. consumeResource();
10. }

4. produceResource()
3. synchronized(lock) {

Wait/Notify Sequence

Lock Object

Producer
Thread

1. synchronized(lock){
2. lock.wait();

5. lock.notify();
6.}

7. Reacquire lock
8. Return from wait()

9. consumeResource();
10. }

4. produceResource()
3. synchronized(lock) {

Consumer
Thread

Wait/Notify Sequence

Lock Object

Producer
Thread

1. synchronized(lock){
2. lock.wait();

5. lock.notify();
6.}

7. Reacquire lock
8. Return from wait()

9. consumeResource();
10. }

4. produceResource()
3. synchronized(lock) {

Consumer
Thread

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){
2. lock.wait();

5. lock.notify();
6.}

7. Reacquire lock
8. Return from wait()

9. consumeResource();
10. }

4. produceResource()
3. synchronized(lock) {

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){
2. lock.wait();

5. lock.notify();
6.}

7. Reacquire lock
8. Return from wait()

9. consumeResource();
10. }

4. produceResource()
3. synchronized(lock) {

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){
2. lock.wait();

5. lock.notify();
6.}

7. Reacquire lock
8. Return from wait()

9. consumeResource();
10. }

4. produceResource()
3. synchronized(lock) {

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){
2. lock.wait();

5. lock.notify();
6.}

7. Reacquire lock
8. Return from wait()

9. consumeResource();
10. }

4. produceResource()
3. synchronized(lock) {

Wait/Notify Sequence

Lock Object

Consumer
Thread

Producer
Thread

1. synchronized(lock){
2. lock.wait();

5. lock.notify();
6.}

7. Reacquire lock
8. Return from wait()

9. consumeResource();
10. }

4. produceResource()
3. synchronized(lock) {

The Simpsons: Main Method

36

public class SimpsonsTest {

 public static void main(String[] args) {

 CookieJar jar = new CookieJar();

 Homer homer = new Homer(jar);
 Marge marge = new Marge(jar);

 new Thread(homer).start();
 new Thread(marge).start();
 }
}

The Simpsons: Homer

37

class Homer implements Runnable {
 CookieJar jar;

 public Homer(CookieJar jar) {
 this.jar = jar;
 }

 public void eat() {
 jar.getCookie("Homer");
 try {
 Thread.sleep((int)Math.random() * 500);
 } catch (InterruptedException ie) {}
 }

 public void run() {
 for (int i = 0 ; i < 5 ; i++) eat();
 }
}

The Simpsons: Marge

38

class Marge implements Runnable {
 CookieJar jar;

 public Marge(CookieJar jar) {
 this.jar = jar;
 }

 public void bake(int cookieNumber) {
 jar.putCookie("Marge", cookieNumber);
 try {
 Thread.sleep((int)Math.random() * 500);
 } catch (InterruptedException ie) {}
 }

 public void run() {
 for (int i = 0 ; i < 5 ; i++) bake(i);
 }
}

The Simpsons: CookieJar

39

class CookieJar {
 private volatile int contents;
 private volatile boolean available = false;

 public synchronized void getCookie(String who)
{

 while (!available) {
 try {
 wait();
 } catch (InterruptedException e) { }
 }
 available = false;
 notifyAll();
 System.out.println(who + " ate cookie "
 +

contents);
 }

public synchronized void putCookie(String who,
 int value) {
 while (available) {
 try {
 wait();
 } catch (InterruptedException e) { }
 }
 contents = value;
 available = true;
 System.out.println(who + " put cookie " +
 contents + ” in the jar");
 notifyAll();
 }
} /* end of class CookieJar */

The Simpsons: Output
Marge put cookie 0 in the jar
Homer ate cookie 0
Marge put cookie 1 in the jar
Homer ate cookie 1
Marge put cookie 2 in the jar
Homer ate cookie 2
Marge put cookie 3 in the jar
Homer ate cookie 3
Marge put cookie 4 in the jar
Homer ate cookie 4

40

Next Lecture
● Introduction to design patterns

o Beginning of last remaining topic in CSE201

41

