CSE201: Advanced Programming

Lecture 20: Mutual Exclusion

Vivek Kumar

Computer Science and Engineering
I1IT Delhi

VVVVVVVVVV

Last Lecture
® Think tasks, not threads

o Tasks are logical unit of work and are lightweight than thread

public class ArraySum implements Runnable {
int[] array;
int sum, low, high;
public ArraySum(int[] arr, int 1, int h) {
array=arr; sum=0; low=1l; high=h;
}
//assume array.length%2=0
public void run() {
for(int i=low; i<high; i++)
sum += array[i];
}
public int getResult() { return sum; }
public static void main(String[] args)
throws InterruptedException {
int size; int[] array; //allocated (size) & initialized
ExecutorService exec = Executors.newFixedThreadPool(2);
ArraySum left = new ArraySum(array, 0, size/2);
ArraySum right = new ArraySum(array, size/2, size);
exec.execute(left); exec.execute(right);
if(!exec.isTerminated()) {
exec.shutdown();
exec.awaitTermination(5L, TimeUnit.SECONDS);

}
int result = left.getResult() + right.getResult();

-

© Vivek Kumar

import java.util.concurrent.*;

public class Fibonacci extends RecursiveTask<Integer> {
int n;
public Fibonacci(int n) { n=_n; }

public Integer compute() {
if(n<2) return n;

Fibonacci left = new Fibonacci(this.n-1);
Fibonacci right = new Fibonacci(this.n-2);
left.fork();
return right.compute() + left.join();

¥

public static void main(String[] args) {
ForkJoinPool pool = new ForkJoinPool(2);
Fibonacci task = new Fibonacci(49);
int result = pool.invoke(task);

Today’s Lecture

Race conditions
Mutual exclusion

o
o
® Monitor locks
® Memory consistency
o

Producer consumer problem

© Vivek Kumar

Race Condition

. How can we have Put red pieces
Put green pieces

alternating colors?

3

© Vivek Kumar

Mutual Exclusion

® Critical section: a block of code that access shared
modifiable data or resource that should be operated on
by only one thread at a time

® Mutual exclusion: a property that ensures that a
critical section is only executed by a thread at a time.

o Otherwise it results in a race condition!

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor
Proaramming” by Maurice Herlihv and Nir Shavit

Threads

® A thread A is (formally) a sequence a,, ay, ... of
events
o Notation: a, = a, indicates order

a10 al1 a12
TP |

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor
Proaramming” by Maurice Herlihy and Nir Shavit

Example Thread Events

Assign to shared variable
Assign to local variable
nvoke method

Return from method

_ots of other things ...

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor
Proaramming” by Maurice Herlihv and Nir Shavit

Concurrent Execution Over Multiple Threads

® Thread A

RS N N

® Thread B

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor
Proaramming” by Maurice Herlihy and Nir Shavit

Interleavings

® Events of two or more threads

o Interleaved
o Not necessarily independent (why?)

BT N) e

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor
Proaramming” by Maurice Herlihy and Nir Shavit

Question

public void run() { counter++; }

class Counter implements Runnable { . What Wl” be the Output Of
int counter = 0; .
this program??
public static void main(String[] args)
throws InterruptedException { O Race on Counter!
ExecutorService exec =

Executors.newFixedThreadPool(2); O Buggy COde and y.OU WI” S€e
different answers in different
Counter task = new Counter();

for(int i=0; i<1000; i++) { runs
exec.execute(task);
}

if(!exec.isTerminated()) {
exec.shutdown();
exec.awaitTermination(5L, TimeUnit.SECONDS);

}

System.out.println(task.counter);

© ViveK Kumar

Implementing Mutual Exclusion

class Counter implements Runnable {
int counter = 0;
// Both the versions of run method below is correct
public synchronized void run() { counter++; }
/* public void run() { synchronized(this) {counter++;} } */
public static void main(String[] args)
throws InterruptedException {
ExecutorService exec =
Executors.newFixedThreadPool(2);

Counter task = new Counter();

for(int i=0; i<1000; i++) {
exec.execute(task);

by

if(!exec.isTerminated()) {
exec.shutdown();
exec.awaitTermination(5L, TimeUnit.SECONDS);

}

System.out.println(task.counter);

© ViveK Kumar

® Ciritical section

o The synchronized
methods (or block) define
the critical sections

o By using synchronized
keyword we achieved
mutual exclusion

* Now let’s analyze this

10

Monitors
[OBJECTJ
MONITOR
LOCK

UNLOCK

Each object has a “monitor” that is a
token used to determine which
application thread has control of a
particular object instance

In execution of a synchronized method
(or block), access 1o the object monitor
must be gained before the execution

Access to the object monitor is queued

Entering a monitor is also referred to as
locking the monitor, or acquiring
ownership of the monitor

If a thread A tries to acquire ownership
of a monitor and a different thread has
already entered the monitor, the current
thread (A) must wait until the other
thread leaves the monitor

11

© Vivek Kumar

Analyzing our Counter Increment Example

® Only one thread
can get the “key”
to enter the “run”
method i.e., take
a lock on monitor

run() ® Rest all threads

NQ wiIH:)he uell(Jed to
\ Lo et the lock on
— (B Honitor

® Note: There is
no guarantee for
fairness, i.e.
longest waiting
thread need not
always ?et the
lock firs

counter++;

12

Static Synchronized Methods

class Counter implements Runnable {
static int counter = 9;

public synchronized static void increment() {counter++;}

public void run() { increment(); }
public static void main(String[] args)
throws InterruptedException {
ExecutorService exec =
Executors.newFixedThreadPool(2);

Counter task = new Counter();
for(int i=0; i<1000; i++) {
exec.execute(task);

}

if(!exec.isTerminated()) {
exec.shutdown();
exec.awaitTermination(5L,TimeUnit.SECONDS);

}

System.out.println(Counter.counter);

© ViveK Kumar

® Marking a static method
as synchronized,
associates a monitor
with the class itself

® The execution of
synchronized static
methods of the same
class is mutually
exclusive

13

We are Still Missing Something...

class Counter implements Runnable { . .
stat%c %nt counter = ?; . o Th|S program W|||
:E:t;:,lgih:g:‘n = RED; //finals RED=0 and GREEN=1 never tel’mlnate

blic Counter(int c1, int c2) { me=cl; other=c2; } . .
E;ncﬁiong:Zdegt;:iccvoi;nup(cjate(irrr:'(: r(r:Ie, ?ntegtﬁer‘) { ® US”]% SynChr\onlzed
if(counter<MAX &% turn==me) { IS JUS one part Of the
counter++; turn=other; perfeCt Solutlon
}
) iblic void run() { ® Although there is no
while(counter < W) { race on shared
if(turn == me .
update(me, other); \a/?]ralatélgfocr:‘()lgﬁ-eter
} 3
} value of counter
}
public static void main(String args[])throws InterruptedException{ and C01or‘ that d
Eounier‘ Easllg = new EounterEé;EENGREEgg; thread beg|nS W|th
ounter task2 = new Counter s 5
Thread tl1 = new Thread(taskl); Thread t2 = new Thread(task2); ma nOt be ItS IaSt
tl.start(); t2.start(); tl.join(); t2.join(); Up ated Value
}
} 14

Memory Consistency Issue (1/2)

///r> CPU 1

Thread 1

N

CPU1
cache

~

_*

f CPU 2

Thread 2

N

CPU 2
cache

)

J

e

e

Main
Memory

Fig. source: http://tutorials.jenkov.com/java-concurrency/volatile.html

© Vivek Kumar

Modern computing systems uses
multicore processors

Each core has its own local cache

For faster data access, memory
referenced by a CPU is first copied
from main memory (RAM) onto its
local cache

The updated memory content on
cache is not immediately written
back to RAM

o This memory address might be
referenced again in near future,
hence immediately writing the cache
content to RAM can hamper
performance 15

Memory Consistency Issue (2/2)

//’ CPU 1

>
Thread 1 counter = 1
<_

-

Cache

\ Main
CPU 1

Memory

V.

AN

> counter =0

//’ CPU 2

Thread 2 counter=0

-

/
CPU 2 ‘\\/
Cache [
¥

J

Fig.

source: http://tutorials.jenkov.com/java-co

ncurrency/volatile.html

© Vivek Kumar

Imagine Counter example has two
threads in its thread pool — Thread
1 on CPU1 and Thread 2 on CPU2

Thread 1 increments counter from
0 to 1. This updated value resides
on the cache of CPU1 and might
not be immediately written back to
the RAM

Thread 2 now gets the chance to
update the counter. It fetches the
counter content from RAM but this
is the old value (=0) and not the
last updated value

This is memory consistency error!

16

The Correct Version of Counter Code

class Counter implements Runnable { ® DeCIare the cOou nter as

volatile static int counter = 0;

volatile static int turn = RED; “VOlatile”

............ ® Indication to JVM for
storing the value of
counter & color on RAM
after every update to it

® \With this each thread wiill
always get the latest
value of the counter &

color

17
© Vivek Kumar

Creating an Object Lock

o e P ronents funable | ® We can also pass any
private Object lock = new Object(); ()t)JEBC:t If]E%tEiT1(3€B t()
public void run() { synchronized

synchronized(lock) {
counter++;

18

© Vivek Kumar

Monitor Locks are Reentrant

class Counter implements Runnable {
volatile int counter = 0;

public synchronized int value() { return counter; }
public synchronized void run() {

if(value() < 100) {
counter++;

© Vivek Kumar

Both value() and run() are
synchronized methods

Monitor locks are reentrant in
Java

o Same thread can recursively
take the same lock

Once a thread has taken a
monitor lock then any further
request by this same thread to
reacquire the same monitor
lock is redundant

Monitor lock is released only
after exiting the oldest
synchronized block

19

Demerits of Monitor Lock

® Does not guarantee fairness

O

Lock might not be given to the longest waiting thread

® Might lead to starvation

O

A thread can indefinitely hold the monitor lock for doing some big
computation while other threads keep waiting to get this monitor
lock

Not possible to interrupt the thread who owns the lock

Not possible for a thread to decline waiting for the lock if its
unavailable

20

© Vivek Kumar

The Producer Consumer Problem

® \Ve need to synchronize between transactions, for
example, the consumer-producer scenario

21

Wait and Notify

® Allows two threads to cooperate

® Based on a single shared lock object

O

O
O
O

Marge put a cookie wait and notify Homer
Homer eat a cookie wait and notify Marge
Marge put a cookie wait and notify Homer
Homer eat a cookie wait and notify Marge

22

The wait() Method

The wait() method is part of the class java.lang.Object
It requires a lock on the object’s monitor to execute

It must be called from a synchronized method, or from a
synchronized segment of code

wait() causes the current thread to relinquish the CPU and
wait until another thread invokes the notify() method or the
notifyAll() method for this object

Upon call for wait(), the thread releases ownership of this
monitor and waits until another thread notifies the waiting

threads of the object

23

Wait/Notify Sequence

1. synchronized(lock){ 3. synchronized(lock) {
2. lock.wait(); 4. produceResource()
9. consumeResource(); 5. lock.notify();
10.} 6.}

Consumer Producer

Wait/Notify Sequence

([.
1. synchronized(lock){ ock O bJ ec} 2 Sgpggzzzg::o(bicci;)o{

2. lock.wait(); e
9. consumeResource(); 5. lock.notify():

10.} . 6.}
7. Reacquire lock

Consumer 8. Return from wait() Producer
Thread Thread

Wait/Notify Sequence

) oo

2. lock.wait(); ~eso
9. consumeResource(); Z-} lock.notify():

10.}

7. Reacquire lock

Consumer 8. Return from wait() Producer
Thread Thread

Wait/Notify Sequence

1. sinchronized(lock){ Lock ObJeCT Z. sg:ggzzzg::(fbiit)(){

5. lock.notify();
6.}

9. consumeResource();
10.}

7. Reacquire lock

Consumer 8. Return from wait() Producer
Thread Thread

Wait/Notify Sequence

Lock Object

7. Reacquire lock

Consumer 8. Return from wait() Producer
Thread

1. synchronized(lock){
2. lock.wait();

9. consumeResource();
10.}

!. pr‘o!uce!esource! !

5,
4

lock.notify();

Wait/Notify Sequence

Lock Object i i i ii, k“

5. lock.notify();
5}

1. synchronized(lock){
2. lock.wait();

9. consumeResource();
10.}

7. Reacquire lock

Consumer 8. Return from wait() Producer
Thread

Wait/Notify Sequence

1. synchronized(lock){ Lock ObJeCT 3. sy:gzzzzg::o(ﬁcct)(){

2. lock.wait();

9. consumeResource();
10.}

7. Reacquire lock

Consumer 8. Return from wait() Producer
Thread

Wait/Notify Sequence

1. synchronized(lock){ Lock Object

2. lock.wait();

9. consumeResource();
10.}

3. synchronized(lock) {
4. produceResource()

5. lock.notify();

7. Reacquire lock

Consumer 8. Return from wait() Producer
Thread

Wait/Notify Sequence

1. synchronized(lock){ Lock ObJeCT Z. sg:ﬁgzzzg::o(ﬁcct)(){

2. lock.wait(); ~eso
9. consumeResource(); Z-} lock.notify():

10.}

7. Reacquire lock

Consumer 0. RETt oM wait() Producer
Thread Thread

Wait/Notify Sequence

1. synchronized(lock){ Lock ObJeCT 2- syncgronged(lock)(){
. produceResource

2. lock.wait(); ~eso
9. consumeResource(); Z-} lock.notify():

10.}

D) ~

8. Re’;ur:n fr:on.w wait()

Consumer
Thread

Producer
Thread

Wait/Notify Sequence

1. synchronized(lock){ Lock ObJeCT Z. sg:ﬁgzzzg::o(ﬁcct)(){

2. lock.wait(); L L
9. consumeResource(); Z-} lock.notify():

7. Reacquire lock

Consumer 8. Return from wait() Producer
Thread Thread

Wait/Notify Sequence

1. synchronized(lock){ Lock ObJeCT Z. sg:ﬁgzzzg::o(ﬁcct)(){

2. lock.wait();
ock.wait() 5. lock.notify();

WnsumeResource(); 6.}

7. Reacquire lock

Consumer 8. Return from wait() Producer
Thread Thread

The Simpsons: Main Method

public class SimpsonsTest {

public static void main(String[] args) {

I CookieJdar jar = new CookieJar(); I
Homer homer = new Homer(jar);
Marge marge = new Marge(jar);
new Thread(homer).start();
new Thread(marge).start();

b

The Simpsons: Homer

class Homer implements Runnable {

ooklelJar jar;

public Homer(CookieJar jar) {
this.jar = jar;
}

public void eat() {
jar.getCookie("Homer");

try {

Thread.sleep((int)Math.random() * 500);
} catch (InterruptedException ie) {}

public void run
for (int 1 =0 ; 1 <5 ; i++) eat();
}

37

The Simpsons: Marge

class Marge implements Runnable {

ooklelJar jar;

public Marge(CookieJar jar) {
this.jar = jar;
}

public void bake(int cookieNumber) {
jar.putCookie("Marge", cookieNumber);

try {

Thread.sleep((int)Math.random() * 500);
} catch (InterruptedException ie) {}

public void run
for (int i =0 ; i <5 ; i++) bake(i);
}

38

The Simpsons: Cookiedar

class CookieJar

private volatile int contents;
private volatile boolean available = false;

public svnchronized void getCookie(String who

while (!available) {
try {

wait();
} catch (InterruptedException e) { }

U V-

J
System.out.println(who + " ate cookie "

contents);

public synchronized void putCookie(String who,
int value

avallable
try {
wait();
} catch (InterruptedException e) { }

contents = value;

available = true;

ystem.out.println(who + = put cookie = +
contents + ” in the jar");

notityA R

} /* end of class CookieJar */

}

39

The Simpsons: Output

Marge put cookie O in the jar
Homer ate cookie O
Marge put cookie 1 in the jar
Homer ate cookie 1
Marge put cookie 2 in the jar
Homer ate cookie 2
Marge put cookie 3 in the jar
Homer ate cookie 3
Marge put cookie 4 in the jar
Homer ate cookie 4

40

Next Lecture

® Introduction to design patterns
o Beginning of last remaining topic in CSE201

41

