
Lecture 21: Introduction to Design
Patterns
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE201: Advanced Programming

© Vivek Kumar

Last Lecture

1

● Critical section: a block of code that access shared modifiable data or
resource that should be operated on by only one thread at a time.

● Mutual exclusion: a property that ensures that a critical section is only
executed by a thread at a time

● Each object has a “monitor” that is a token used to determine which
application thread has control of a particular object instance

● Producer consumer problem
o We need to synchronize between transactions, for example, the consumer-

producer scenario

Today’s Lecture
● One remaining topic in multithreading

o Deadlocks

● Introduction to design patterns
o Iterator
o Singleton
o Flyweight
o (Acknowledgement: CSE331, University of Washington)

2

3

Let’s Code a Deadlock

4

public class BankAccount {

 private volatile float balance;

 public synchronized void deposit(float amount) {
 balance += amount;
 }

 public synchronized void withdraw(float amount) {
 balance -= amount;
 }

 public synchronized void transfer(float amount,
 BankAccount target) {
 withdraw(amount);
 target.deposit(amount);
 }
}

public class MoneyTransfer implements Runnable {
 private BankAccount source, target;
 private float amount;
 public MoneyTransfer(BankAccount from,
 BankAccount to, float amount) {
 this.source = from;
 this.target = to;
 this.amount = amount;
 }
 public void run() {
 source.transfer(amount, target);
 }
}

BankAccount aliceAccount = new BankAccount();
BankAccount bobAccount = new BankAccount();
...
// At one place
Runnable transaction1 = new MoneyTransfer(aliceAccount, bobAccount, 1200);
Thread t1 = new Thread(transaction1);
t1.start();

// At another place
Runnable transaction2 = new MoneyTransfer(bobAccount, aliceAccount, 700);
Thread t2 = new Thread(transaction2);
t2.start();

© Vivek Kumar

Let’s Analyze Our Bank Transaction

5

deposit()

aliceAccount bobAccount

t1 t2

deposit() ?
transfer()

withdraw()

transfer()

withdraw()

© Vivek Kumar

Deadlock Avoidance
● Deadlock occurs when multiple threads need the

same set of locks but obtain them in different order
● Not so easy to avoid deadlocks
● It’s an active research area

Let’s try simple remedies to fix
our Bank Transaction program

6
© Vivek Kumar

Deadlock Avoidance
● Lock ordering

o Ensure that all locks are taken in same order by any thread

● Lock timeout
o Put a timeout on lock attempts

§ Not possible with monitor locks
• You will need java.util.concurrent.ReentrantLock

7
© Vivek Kumar

Now Let’s Resolve the Deadlock

8

public class BankAccount {

 private volatile float balance;
 final int account_id;

 public BankAccount(int i) { account_id = i; }

 public synchronized void deposit(float amount) {
 balance += amount;
 }

 public synchronized void withdraw(float amount) {
 balance -= amount;
 }

 public synchronized void transfer(float amount,
 BankAccount target) {
 withdraw(amount);
 target.deposit(amount);
 }
}

BankAccount aliceAccount = new BankAccount(1); // account_id = 1;
BankAccount bobAccount = new BankAccount(2); // account_id = 2;
...
// At one place
Runnable transaction1 = new MoneyTransfer(aliceAccount, bobAccount, 1200);
Thread t1 = new Thread(transaction1);
t1.start();

// At another place
Runnable transaction2 = new MoneyTransfer(bobAccount, aliceAccount, 700);
Thread t2 = new Thread(transaction2);
t2.start();

public class MoneyTransfer implements Runnable {
 private BankAccount source, target;
 private float amount;
 public MoneyTransfer(BankAccount from,
 BankAccount to, float amount) {
 this.source = from;
 this.target = to;
 this.amount = amount;
 }
 public void run() {
 Object obj1 = null, obj2 = null;
 if(source.account_id > target.account_id) {
 obj1=target; obj2=source;
 }
 else { obj1=source; obj2=target; }
 synchronized(obj1) { synchronized(obj2) {
 source.transfer(amount, target);
 } }
 }
}

● We are using lock ordering
technique here to resolve the
deadlock

● Lock on BankAccount objects
are taken in run() method as per
the ascending order value of the
account_id
o Recall monitor locks are

reentrant
© Vivek Kumar

Where are we as of now
● CSE201 Post Conditions

1. Students are able to demonstrate the knowledge of basic
principles of Object Oriented Programming such as
encapsulation (classes and objects), interfaces,
polymorphism and inheritance; by implementing programs
ranging over few hundreds lines of code

2. Implement basic event driven programming, exception
handling, and threading
§ Already covered little bit of event driven programming in

refresher module (Day 3) but we will see more
3. Students are able to analyze the problem in terms of use

cases and create object oriented design for it. Students
are able to present the design in UML
§ Already covered little bit of UML but we will see more

4. Students are able to select and use a few key design
pattern to solve a given problem in hand
§ Lectures 21 — 24 (lectures 25/26 will be endsem review)

5. Students are able to use common tools for testing (e.g.,
JUnit), debugging, and source code control as an integral
part of program development
§ Will turn green by end of this week

Let’s change gears…

Design Patterns

© Vivek Kumar

What is Design Pattern
● It is a solution for a repeatable problem in the

software design
● This is not a complete design for a software

system that can be directly transformed into code
● It is a description or template for how to solve the

problem that can be used in many different
situations

11

Why Study Patterns
● Reuse tried, proven solutions

o Provides a head start
o Avoids gotchas later (unanticipated things)
o No need to reinvent the wheel

● Establish common terminology
o Design patterns provide a common point of reference
o Easier to say, “We could use Strategy here.”

● Provide a higher level prospective
o Frees us from dealing with the details too early

12

“GoF” (Gang of Four) patterns
● Creational Patterns (abstracting the object-instantiation process)

o Factory Method Abstract Factory Singleton
o Builder Prototype

● Structural Patterns (how objects/classes can be combined)
o Adapter Bridge Composite
o Decorator Facade Flyweight
o Proxy

● Behavioral Patterns (communication between objects)
o Command Interpreter Iterator
o Mediator Observer State
o Strategy Chain of Responsibility Visitor
o Template Method

In 1990 a group called the Gang of Four or "GoF” (Gamma, Helm, Johnson, Vlissides) compile a catalog of design patterns in the book “Design
Patterns: Elements of Reusable Object-Oriented Software”

Pattern: Iterator
objects that traverse collections

Pattern: Iterator
● Recurring Problem

o How can you loop over all objects in any collection. You don’t want to
change client code when the collection changes. Want the same
methods

● Solution
1. Provide a standard iterator object supplied by all data structures
2. The implementation performs traversals, does bookkeeping
3. The implementation has knowledge about the representation
4. Results are communicated to clients via a standard interface

● Consequences
o Can change collection class details without changing code to traverse

the collection

15

Pattern: Singleton
A class that has only a single instance

Pattern: Singleton
● Recurring problem

o Sometimes we only ever need
one instance of a particular class

o It should be illegal to have
another instance of the same
class

● Solution
o Singleton pattern – ensuring that

a class has at most one instance
o Providing global access to that

instance

17Fig. source: https://rajneekanth.wordpress.com/2014/04/11/what-are-design-patterns/

Implementing Singleton
1. Make constructor private so

that no client is able to call it
from outside

2. Declare a single private
static instance of the class

3. Write a getInstance()
method (or similar) that
allows access to the single
instance
o Ensure thread safety in case

multiple threads can access this
method

18

Singleton Example
● Creates a new random

generator
● Clients will not use the

constructor directly but will
instead call getInstance to
obtain
a RandomGenerator obect
that is shared by all classes in
the application

● Lazy initialization
o Can wait until client asks for

the instance to create it
o How to ensure thread safety?

19

public class RandomGenerator {

 private static RandomGenerator gen = null;

 public static RandomGenerator getInstance()
 {
 if (gen == null) {
 gen = new RandomGenerator();
 }

 return gen;
 }

 private RandomGenerator() {}

 ...
}

© Vivek Kumar

Singleton Comparator
● Comparators make great

singletons because they have
no state

● Saves memory by not allowing
the creation of more than one
object

20

public class LengthComparator
 implements Comparator<String> {

 private static LengthComparator comp = null;

 public static LengthComparator getInstance()
 {
 if (comp == null) {
 comp = new LengthComparator();
 }
 return comp;
 }

 private LengthComparator() {}

 public int compare(String s1, String s2) {
 return s1.length() - s2.length();
 }
}

© Vivek Kumar

Pattern: Flyweight
a class that has only one instance for

each unique state

Pattern: Flyweight
● Problem

o Redundant objects can bog down the system
§ Many objects have the same state

o Example: File objects that represent the same file on disk
§ new File("chatlog.txt")
§ new File("chatlog.txt")
§ new File("chatlog.txt")

...
§ new File("notes.txt")

o Example: Date objects that represent the same date of the year
§ new Date(4, 18)
§ new Date(4, 18)

22

Pattern: Flyweight
● An assurance that no more

than one instance of a
class will have identical
state
o Achieved by caching identical

instances of objects.
o Similar to singleton, but one

instance for each unique object
state

o Useful when there are many
instances, but many are
equivalent

23Fig source: http://www.c-sharpcorner.com/UploadFile/SukeshMarla/learn-design-pattern-flyweight-pattern/

public class Flyweighted {
 private static Map<KeyType, Flyweighted> instances
 = new HashMap<KeyType, Flyweighted>();

 private Flyweighted(...) { ... }

 public static Flyweighted getInstance(KeyType key) {
 if (!instances.contains(key)) {
 instances.put(key, new Flyweighted(key));
 }
 return instances.get(key);
 }
}

Implementing a Flyweight (1/2)

25

Implementing a Flyweight (2/2)
public class Point {
 private int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public int getX() { return x; }
 public int getY() { return y; }

 public String toString() {
 return "(" + x + ", " + y + ")";
 }
}

public class Point {

 private static Map<String, Point> instances =
 new HashMap<String, Point>();

 public static Point getInstance(int x, int y)
 {
 String key = x + ", " + y;
 if (!instances.containsKey(key)) {
 instances.put(key, new Point(x, y));
 }
 return instances.get(key);
 }

 private final int x, y; // immutable

 private Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
 public int getX() { return x; }
 public int getY() { return y; }
 public String toString() {
 return "(" + x + ", " + y + ")";
 }
}

© Vivek Kumar

Flyweighting in String by JVM
● The possible combinations for Strings is close to

infinite, hence JVM maintains a cache for strings,
called the string constant pool
o It is empty at startup and is filled constantly during the lifecycle of the

JVM
● Java String objects are automatically flyweighted by the JVM

whenever possible
o If you declare two string variables that point to the same literal.
o If you concatenate two string literals to match another literal

26

taenString
String a = "neat";
String b = "neat";
String c = "n" +
"eat";

Next Lecture
● More design patterns
● Quiz-5

o Syllabus: Lectures 17-20

27

