
Lecture 22: Adapter and Strategy
Design Pattern

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE201: Advanced Programming

Last Lecture ● Deadlocks
o Deadlock occurs when multiple threads need the same locks but obtain them in

different order
o It could be avoided by using lock ordering

§ Ensure that all locks are taken in same order by any thread

● Design Patterns – it is a description or template for how to solve a
repeatable problem in the software design

● Four examples
o Iterator

§ Provides a solution to loop over all objects in any type of collection without changing
client’s code

o Singleton
§ Provides a class that has at most one instance

o Flyweight
§ Provides a class that has only one instance for each unique object

1

class Transfer {
 Account A, B;
 int amount;

 void run() {
 synchronized(A) {
 synchronized(B) {
 A.debit(amount);
 B.credit(amount);
 }
 }
 }
}

Today’s Lecture
● Adapter design pattern (DP # 4)
● Strategy design pattern (DP # 5)

2

Pattern: Adapter
an object that fits another object into a

given interface

Pattern: Adapter

4
Fig source: http://javarevisited.blogspot.in/2016/08/adapter-design-pattern-in-java-example.html

● Recurring problem
o We have an object that

contains the functionality
we need, but not in the way
we want to use it

● Solution
o Create an adapter object

that bridges the provided
and desired functionality

Adapter Pattern Example (1/2)

5

public class Vehicle {
 public static void main(String[] args) {
 List<Movable> mylist = new ArrayList<Movable>();

 mylist.add(new Car());
 mylist.add(new Bike());

 for(Movable obj: mylist) {
 obj.move();
 }
 }

}

public interface Movable {
 public void move();
}

public class Car implements Movable {
 public void move() {
 System.out.println(“Car is moving”);
 }
}

public class Bike implements Movable {
 public void move() {
 System.out.println(“Bike is moving”);
 }
}

public interface Flyable {
 public void fly();
}

public class Airplane implements Flyable {
 public void fly() {
 System.out.println(“Airplane is flying”);
 }
}

public class Drone implements Flyable {
 public void fly() {
 System.out.println(“Drone is flying”);
 }
}

● The adaptee interface “Flyable” only
implements fly() method, although it is
similar to move() in Movable inteface

● Client class, Vehicle, doesn’t understand
Flyable and only use Movable
o How to add Flyable type objects inside

Movable type list in Vehicle?
o We will code an adaptor that can serve this

client by using this adaptee without any
modifications

© Vivek Kumar

Adapter Pattern Example (2/2)

6

public class Vehicle {
 public static void main(String[] args) {
 List<Movable> mylist = new ArrayList<Movable>();

 mylist.add(new Car());
 mylist.add(new Bike());

 mylist.add(new FlyableAdapter(new Airplane()));
 mylist.add(new FlyableAdapter(new Drone()));

 for(Movable obj: mylist) {
 obj.move();
 }
 }

}

public class FlyableAdapter implements Movable {
 Flyable type;
 public FlyableAdapter(Flyable type) {
 this.type = type;
 }
 public void move() {
 type.fly();
 }
}

public interface Movable {
 public void move();
}

public class Car implements Movable {
 public void move() {
 System.out.println(“Car is moving”);
 }
}

public class Bike implements Movable {
 public void move() {
 System.out.println(“Bike is moving”);
 }
}

public interface Flyable {
 public void fly();
}

public class Airplane implements Flyable {
 public void fly() {
 System.out.println(“Airplane is flying”);
 }
}

public class Drone implements Flyable {
 public void fly() {
 System.out.println(“Drone is flying”);
 }
}

© Vivek Kumar

Pattern: Strategy
objects that hold different algorithms to solve a

problem

Let’s Build a Duck Simulator!
● Concepts we will revisit

o Inheritance
o Interfaces
o Polymorphism

9
© Vivek Kumar

What are their Characteristics?

10

● I’m Wood duck
● I can quack
● I can swim
● I can fly
● My home is on trees

● I’m Dabbler duck
● I can quack
● I can swim
● I can fly
● My home is on ground

© Vivek Kumar

How to Code a Duck Simulator?

11

● I’m Wood duck
● I can quack
● I can swim
● I can fly
● My home is on trees

Inheritance?
● I’m Dabbler duck
● I can quack
● I can swim
● I can fly
● My home is on ground

© Vivek Kumar

Lets See the Code

12

public abstract class Duck {
 private String name;
 public Duck(String n) { this.name = n; }

 public void type() {
 System.out.println(“I am “+ name+” Duck”);
 }
 public void speak() {
 System.out.println(“I can quack”);
 }
 public void swim() {
 System.out.println(“I can swim”);
 }
 public void fly() {
 System.out.println(“I can fly”);
 }
 public abstract void home();
 public void display() {
 this.type();
 this.speak();
 this.swim();
 this.fly();
 this.home();
 }
}

public class Dabbler extends Duck {
 public Dabbler() { super(“Dabbler”); }

 public void home() {
 System.out.println(“My home is on ground”);
 }
}

public class Wood extends Duck {
 public Wood() { super(“Wood”); }

 public void home() {
 System.out.println(“My home is on trees”);
 }
}

// Calling display on above two Duck type objects
I am Wood Duck
I can quack
I can swim
I can fly
My home is on trees
I am Dabbler Duck
I can quack
I can swim
I can fly
My home is on ground

© Vivek Kumar

Any Problems?

13

public abstract class Duck {
 private String name;
 public Duck(String n) { this.name = n; }

 public void type() {
 System.out.println(“I am “+ name+” Duck”);
 }
 public void speak() {
 System.out.println(“I can quack”);
 }
 public void swim() {
 System.out.println(“I can swim”);
 }
 public void fly() {
 System.out.println(“I can fly”);
 }
 public abstract void home();
 public void display() {
 this.type();
 this.speak();
 this.swim();
 this.fly();
 this.home();
 }
}

public class Dabbler extends Duck {
 public Dabbler() { super(“Dabbler”); }

 public void home() {
 System.out.println(“My home is on ground”);
 }
}

public class Wood extends Duck {
 public Wood() { super(“Wood”); }

 public void home() {
 System.out.println(“My home is on trees”);
 }
}

● I’m Rubber duck
● I can squeak
● I can swim
● I don’t fly
● Your home is my home

Please code
me too L

© Vivek Kumar

What are the Issues?
● Applying inheritance for code reuse sometimes

backfires
● Poor solution for maintenance

o Our assumption that all Ducks can Fly is incorrect
o Our assumption that all Ducks make quack-quack sound is

incorrect

● How to fix this issue?
o Overriding both the methods fly() and speak() in subclass Rubber

Duck

14
© Vivek Kumar

Let’s Implement the Fix

15

public abstract class Duck {
 private String name;
 public Duck(String n) { this.name = n; }

 public void type() {
 System.out.println(“I am “+ name+” Duck”);
 }
 public void speak() {
 System.out.println(“I can quack”);
 }
 public void swim() {
 System.out.println(“I can swim”);
 }
 public void fly() {
 System.out.println(“I can fly”);
 }
 public abstract void home();
 public void display() {
 this.type();
 this.speak();
 this.swim();
 this.fly();
 this.home();
 }
}

public class Rubber extends Duck {
 public Rubber() { super(“Rubber”); }

 @Override
 public void speak() {
 System.out.println(“I can Squeak”);
 }
 @Override
 public void fly() {
 System.out.println(“I don’t Fly”);
 }
 public void home() {
 System.out.println(“Your home is my home”);
 }
}

// Calling display on Rubber Duck type object
I am Rubber Duck
I can Squeak
I can swim
I don’t Fly
Your home is my home

© Vivek Kumar

Wait.. What if we get other non-flyable Duck?

16

public abstract class Duck {
 private String name;
 public Duck(String n) { this.name = n; }

 public void type() {
 System.out.println(“I am “+ name+” Duck”);
 }
 public void speak() {
 System.out.println(“I can quack”);
 }
 public void swim() {
 System.out.println(“I can swim”);
 }
 public void fly() {
 System.out.println(“I can fly”);
 }
 public abstract void home();
 public void display() {
 this.type();
 this.speak();
 this.swim();
 this.fly();
 this.home();
 }
}

public class Rubber extends Duck {
 public Rubber() { super(“Rubber”); }

 @Override
 public void speak() {
 System.out.println(“I can Squeak”);
 }
 @Override
 public void fly() {
 System.out.println(“I don’t Fly”);
 }
 public void home() {
 System.out.println(“Your home is my home”);
 }
}

● If we have to code
a Domestic Duck
then they too don’t
fly
o This means we need

to Override the fly()
method even inside
Domestic Duck class

© Vivek Kumar

What are the Issues?

17

● Another Duck type could speak in
 a language other than “Quack” and “Squeak”

o Examples:
§ Decoy Duck can’t speak
§ Whistling Duck make whistles

o As there are several possible ways to speak, we don’t have any
choice other than Overriding the speak() method

● However, the flying capability could be either true or false only.
As the options for flying capability is limited, can we write a
better code?
o How about using an interface called Flyable that has fly() method?

§ Again there will be lot of duplicate code as each Duck type will have to
implement this interface to show their flying capability

© Vivek Kumar

Recap: Design Principals
● Program to a supertype and not for an implementation

o We used Duck as superclass in past

● Identify the aspects of the implementation that differs and
separate them out from what stays the same
o We took out similar functionality inside the superclass Duck and

left the specialized implementation inside subclass

18
© Vivek Kumar

Using Strategy Pattern for Final Fix
1. We will still use Flyable interface BUT will limit its

implementation in only two classes
2. Create a field of Flyable type in supertype (Duck)
3. Each subclass will simply instantiate this field inside their

constructor with correct flying ability. The flying capability
are defined inside the two classes mentioned in Step-1

4. display() method in Duck will use polymorphism to show
the correct flying capability

19
© Vivek Kumar

Applying Strategy
Pattern: The Final Fix!

20

public abstract class Duck {
 private String name;
 private Flyable flyStatus;
 public Duck(String n, Flyable f) {
 this.name = n;
 this.flyStatus = f;
 }

 public void tryFlying() {
 flyStatus.fly();
 }
 public void display() {
 this.type();
 this.speak();
 this.swim();
 this.tryFlying();
 this.home();
 }
}

public class Rubber extends Duck {
 public Rubber() {
 super(“Rubber”, new CannotFly());
 }
 @Override
 public void speak() {
 System.out.println(“I can Squeak”);
 }
 public void home() {
 System.out.println(“Your home is my home”);
 }
}

public class Dabbler extends Duck {
 public Dabbler() {
 super(“Dabbler”, new CanFly());
 }

}

public interface Flyable {
 public void fly();
}

public class CanFly implements Flyable {
 public void fly() {
 System.out.println(“I can Fly”);
 }
}

public class CannotFly implements Flyable {
 public void fly() {
 System.out.println(“I don’t Fly”);
 }
}

© Vivek Kumar

Summary: Strategy Pattern
● In Strategy pattern, a class behavior (or its algorithm) can

be changed at run time
● In Strategy pattern, we create objects which represent

various strategies and a context object whose behavior
varies as per its strategy object

● The strategy object changes the executing algorithm of the
context object

● This type of design pattern comes under behavior pattern

21
© Vivek Kumar

Next Lecture
● More design patterns
● Quiz-5

22

