
Lecture 23: Template, Prototype,
Factory & Façade Design Patterns

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE201: Advanced Programming

Last Lecture
Adaptor Design Pattern

● Recurring problem -- We have an object that contains the
functionality we need, but not in the way we want to use it

● Solution – Create an adapter object that bridges
the provided and desired functionality

Strategy pattern

● Here, a class behavior (or its algorithm) can be
changed at run time

● In Strategy pattern, we create objects which
represent various strategies and a context object
whose behavior varies as per its strategy object

● The strategy object changes the executing
algorithm of the context object

1

Today’s Lecture
● Some more design patterns

o Template (DP # 6)
o Prototype (DP # 7)
o Factory (DP # 8)

§ Abstract Factory (DP # 9)
o Façade (DP # 10)

2

Pattern: Facade

3

Facade Pattern
● Facade: a structural design pattern used to identifying a

simple way to realize relationships between entities
● Provide a unified “interface” to a set of interfaces in a

subsystem. Facade defines a higher-level interface that
makes the subsystem easier to use

4
© Vivek Kumar

● Call center wants cost
cutting and employees
only one agent for
handling all customer
issues
o Result?

§ Overloaded employee and
bad customer satisfaction!

5

class CallCenter {
 public void handleNetwork() { / *Some code */ }
 public void handleBilling() { /* Some code */ }
 public void handleRoaming() { /* Some code */ }
 public void handleAccount() { /* Some code */ }

}

public class Client {
 public static void main(String[] args) {
 CallCenter c = new CallCenter();
 c.handleNetwork();
 c.handleBilling();
 c.handleRoaming();
 c.handleAccount();
 }
}

The Tale of a Call Center

© Vivek Kumar

● Facade design to the
rescue
o Hiding the complexities of a

large body of code by
providing a simplified
interface

6

public class Client {
 public static void main(String[] args) {
 CallCenter c = new CallCenter();
 c.handleCalls(1);

 }
}

A Better Call Center Using Facade
class CallCenter {
 NetworkTeam net;
 BillingTeam bill;
 RoamingTeam roam;
 AccountTeam account;
 public CallCenter() { /* initializations */ }
 public void handleCalls(int option) {
 switch(option) {
 case 1:
 net.handleNetwork();
 break;
 case 2:
 bill.handleBilling();
 break;

 }
 }
}

© Vivek Kumar

Pattern: Template
Define the skeleton of an algorithm in
an operation, deferring some steps to

client subclasses

Acknowledgements for slides on template pattern: Informatics 122 Software Design II, Bren School (UCI)

Let’s Build a Café Simulator
● Coffee

o Boil Water
o Brew Coffee in boiling water
o Pour in cup
o Add sugar and milk

8

● Tea
o Boil Water
o Steep tea in boiling water
o Pour in cup
o Add sugar and lemon

Inheritance?

© Vivek Kumar

9

public abstract class Cafe {
 public void boilWater() {
 System.out.println(“Boil Water”);
 }
 public void pourInCup() {
 System.out.println(“Pour in Cup”);
 }
 public abstract void prepare();
}

Let’s See the Code
public class Coffee extends Cafe {
 public void prepare() {
 boilWater();
 brewCoffee();
 pourInCup();
 addSugarAndMilk();
 }
 private void brewCoffee() {
 System.out.println(“Brew Coffee”);
 }
 private void addSugarAndMilk() {
 System.out.println(“Add Sugar and Milk”);
 }
}

public class Tea extends Cafe {
 public void prepare() {
 boilWater();
 steepTeaBag();
 pourInCup();
 addSugarAndLemon();
 }
 private void steepTeaBag() {
 System.out.println(“Steep Tea Bag”);
 }
 private void addSugarAndLemon() {
 System.out.println(“Add Sugar and Lemon”);
 }
}

● Do you see any issues here?
o Similar algorithms in prepare !!

§ How about doing the following?
• Replace brewCoffee() and

steepTeaBag() with brew()
• Replace addSugarAndMilk()

and addSugarAndLemon()
with addCondiments()

© Vivek Kumar

Template Pattern
● The Template Method pattern defines the skeleton of an

algorithm in a method, deferring some steps to subclasses
● Template Method lets subclasses redefine certain steps of

an algorithm without changing the algorithm’s structure
● Usage

1. Define the algorithm in superclass and ensure that subclasses
cannot change the structure of this algorithm

2. Each step of the algorithm is represented by a method
3. Steps (methods) handled by subclasses are declared abstract
4. Shared steps (concrete methods) are placed in the superclass

10

11

public abstract class Cafe {
 public void boilWater() {
 System.out.println(“Boil Water”);
 }
 public void pourInCup() {
 System.out.println(“Pour in Cup”);
 }
 // “final” ensures that the person preparing
 // the beverage sticks to the recipe of this
 // Café instead of generating his own
 public final void prepare() {
 boilWater();
 brew();
 pourInCup();
 addCondiments();
 }
 public abstract void brew();
 public abstract void addCondiments();
}

The Fixed Code
public class Coffee extends Cafe {
 private void brew() {
 System.out.println(“Brew Coffee”);
 }
 private void addCondiments() {
 System.out.println(“Add Sugar and Milk”);
 }
}

public class Tea extends Cafe {
 private void brew() {
 System.out.println(“Steep Tea Bag”);
 }
 private void addCondiments() {
 System.out.println(“Add Sugar and Lemon”);
 }
}

© Vivek Kumar

Pattern: Prototype
An object that serves as a basis for

creation of others

Source of this slide: CSE331, Washington University

Let’s Build a Cloning Laboratory Simulator
● We are going to clone following

Animals in our lab
o Sheep

§ “Is an” Animal but has wool
o Chicken

§ “Is an” Animal but lay eggs

● Which concepts we will be
using?
o Inheritance
o Object cloning

13
© Vivek Kumar

14

public class Animal {
 private String name;
 public Animal(String n) { name=n; }
 public void sayHello() {
 System.out.println(“I am a “ + name);
 }
}

Cloning Lab Simulator public class Sheep extends Animal implements Cloneable {
 private String wool;
 public Sheep() { super(“Sheep”); wool =“10KG”; }
 public void sayHello() {
 super.sayHello();
 System.out.println(“I have “+wool+” wool”);
 }
 public Sheep clone() throws CloneNotSupportedException
{
 return (Sheep) super.clone();
 }
}

public class Chicken extends Animal implements Cloneable {
 private int eggs;
 public Chicken() { super(“Chicken”); eggs=3; }
 public void sayHello() {
 super.sayHello();
 System.out.println(“I have “+eggs+” eggs”);
 }
 public Chicken clone() throws
CloneNotSupportedException{
 return (Chicken) super.clone();
 }
}

public class Lab1 {
 public static Sheep getClone(Sheep s)
 thrown CloneNotSupportedException {
 return s.clone();
 }
}

public class Lab2 {
 public static Chicken getClone(Chicken s)
 thrown CloneNotSupportedException {
 return s.clone();
 }
}

public class Client {
 public static void main(String[] args) throws CloneNotSupportedException{
 Sheep s1 = new Sheep(); Chicken c1 = new Chicken();
 Sheep s2 = Lab1.getClone(s1);
 Chicken c2 = Lab2.getClone(c2);
 }
}

© Vivek Kumar

What are the Issues?
● Instead of having just one laboratory

for all Animal types, we ended up
creating individual Animal specific
laboratory
o No use of polymorphism!

● Client has to ensure he requests the
laboratory suited for his Animal type

● Code duplication!
o More serious when we need to code

some more Animal types (Cow, Dog, etc.)
15

© Vivek Kumar

Prototype Pattern
● Problem: Client wants another object similar to an

existing one, but doesn't care about the details of the state
of that object
o Creating an instance of a class is time-consuming or complex in

some way

● Solution
o Decouple product creation from system behavior
o Avoid subclasses of an object creator in the client application

16
© Vivek Kumar

17

public class Animal implements Cloneable {
 private String name;
 public Animal(String n) { name=n; }
 public void sayHello() {
 System.out.println(“I am a “ + name);
 }
 public Animal clone() throws CloneNotSupportedException {
 return (Animal) super.clone();
 }
}

The Fixed Version

public class Lab {
 public static Animal getClone(Animal s) {
 return s.clone();
 }
}

public class Sheep extends Animal {
 private String wool;
 public Sheep() { super(“Sheep”); wool =“10KG”; }
 public void sayHello() {
 super.sayHello();
 System.out.println(“I have “+wool+” wool”);
 }
 public Sheep clone() throws CloneNotSupportedException
{
 return (Sheep) super.clone();
 }
}

public class Chicken extends Animal {
 private int eggs;
 public Chicken() { super(“Chicken”); eggs=3; }
 public void sayHello() {
 super.sayHello();
 System.out.println(“I have “+eggs+” eggs”);
 }
 public Chicken clone() throws
CloneNotSupportedException{
 return (Chicken) super.clone();
 }
}

public class Client {
 public static void main(String[] args) throws CloneNotSupportedException{
 Animal s1 = new Sheep(); Animal c1 = new Chicken();
 Animal s2 = Lab.getClone(s1);
 Animal c2 = Lab.getClone(c2);
 }
}

© Vivek Kumar

Sheep and Chicken also
requires clone() implementation
to enable deep copy (if any
such fields are there in class)

Drawback of Prototype Pattern
● It is built on the method clone(), which could be

complicated sometimes in terms of shallow copy and deep
copy

18
© Vivek Kumar

Pattern: Factory
A method or object that creates other

objects

Source of this slide: CSE331, Washington University

Let’s Revisit our Client from Cloning Laboratory

● We have got more funding
and our lab now support
some more Animals!
o Our client now has options

to choose Animals based on
his requirements

● What is the issue here?
o Mixing two events in same

place (or method)
§ Animal creation
§ Cloning of Animal

20

public class Client {
 public static void main(String[] args) throws
CloneNotSupportedException{
 String need = args[0];
 Animal animal;
 if(need.equals(“wool”) {
 animal = new Sheep();
 }
 else if(need.equals(“eggs”) {
 animal = new Chicken();
 }
 else if(need.equals(“milk”) {
 animal = new Cow();
 }
 else System.exit(-1);
 // Our client is too greedy
 Animal[] cloned = new Animal[100];
 for(int i=0; i<cloned.length; i++) {
 cloned[i] = Lab.getClone(animal);
 }
 }
}

© Vivek Kumar

● When we have several
related classes, that’s an
indication that they might
change in future
o We might expand our Lab to

support cloning of several
other Animals…

● What is the issue?
o Client code needs to be

recompiled:
§ Every time we add the

support for a new Animal in
our Lab

§ Every time if we remove
the support for an existing
Animal in our Lab

21

public class Client {
 public static void main(String[] args) throws
CloneNotSupportedException{
 String need = args[0];
 Animal animal;
 if(need.equals(“wool”) {
 animal = new Sheep();
 }
 else if(need.equals(“eggs”) {
 animal = new Chicken();
 }
 else if(need.equals(“milk”) {
 animal = new Cow();
 }
 else if(need.equals(“protection”) {
 animal = new Dog();
 }
 else if(need.equals(“riding”) {
 animal = new Horse();
 }

 }
}

The Issue with “new”

© Vivek Kumar

Factory Pattern
● Factory: A method or object whose primary purpose is to

manage the creation of other objects (usually of a different
type)

● Problem: Object creation is cumbersome or heavily
coupled for a given client. Client needs to create but
doesn't want the details.

● Solution: A helper method that creates and returns the
object(s)

22

The Fix: Encapsulate Creation Code

23

● What are the benefits?
o Client need not recompile if

support for Animals are
added or removed in our
Lab

o Easy to serve some other
Client class

o Ensure consistent object
initialization

public class AnimalFactory {
 public Animal createAnimal(String need) {
 if(need.equals(“wool”) {
 return new Sheep();
 }
 else if(need.equals(“eggs”) {
 return new Chicken();
 }

 }
}

public class Client {
 public static void main(String[] args) throws
CloneNotSupportedException{
 String need = args[0];
 AnimalFactory factory = new AnimalFactory();
 Animal animal = factory.createAnimal(need);
 // Our client is too greedy
 Animal[] cloned = new Animal[100];
 for(int i=0; i<cloned.length; i++) {
 cloned[i] = Lab.getClone(animal);
 }
 }
}

© Vivek Kumar

We Have Another Problem Now…

24

● Our cloning Lab is in very
high demand and we
have started cloning
almost every Animal
(except ourselves…)

● Supporting creation of so
many Animals in just
AnimalFactory class is
becoming a bottleneck

public class AnimalFactory {
 public Animal createAnimal(String need) {
 if(need.equals(“wool”) {
 return new Sheep();
 }
 else if(need.equals(“eggs”) {
 return new Chicken();
 }

 }
}

public class Client {
 public static void main(String[] args) throws
CloneNotSupportedException{
 String need = args[0];
 AnimalFactory factory = new AnimalFactory();
 Animal animal = factory.createAnimal(need);
 // Our client is too greedy
 Animal[] cloned = new Animal[100];
 for(int i=0; i<cloned.length; i++) {
 cloned[i] = Lab.getClone(animal);
 }
 }
}

© Vivek Kumar

Abstract Factory Pattern
● A superclass factory that can be extended to provide

different sub-factories, each with different features
● Used when we have multiple families of object

components

25Cat Family Dog Family© Vivek Kumar

The Fix: Abstract Factory Pattern

26

public abstract class AnimalFactory {
 public abstract Animal createAnimal(String need);
}

public class ClientForCats {
 public static void main(String[] args) throws
CloneNotSupportedException{
 String need = args[0];
 AnimalFactory factory = new CatFactory();
 Animal animal = factory.createAnimal(need);
 // Our client is too greedy
 Animal[] cloned = new Animal[100];
 for(int i=0; i<cloned.length; i++) {
 cloned[i] = Lab.getClone(animal);
 }
 }
}

public class CatFactory extends AnimalFactory {
 public Animal createAnimal(String need) {
 if(need.equals(“pet”) {
 return new HouseCat();
 }
 else if(need.equals(“zoo”) {
 return new Lion();
 }
 }
}

public class DogFactory extends AnimalFactory {
 public Animal createAnimal(String need) {
 if(need.equals(“kids”) {
 return new Poodle();
 }
 else if(need.equals(“hunting”) {
 return new Greyhound();
 }
 }
}

public class ClientForDogs {
 public static void main(String[] args) throws
CloneNotSupportedException{
 String need = args[0];
 AnimalFactory factory = new DogFactory();
 Animal animal = factory.createAnimal(need);
 // Our client is too greedy
 Animal[] cloned = new Animal[100];
 for(int i=0; i<cloned.length; i++) {
 cloned[i] = Lab.getClone(animal);
 }
 }
} © Vivek Kumar

Next Lecture
● Remaining 6 more design patterns
● Quiz-5
● Bonus assignment-7

27

