
Lecture 24: Design Pattern Part-4
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE201: Advanced Programming

Last Lecture● Five design patterns
o Template

§ Define the skeleton of an algorithm in an
operation, deferring some steps to client
subclasses

o Prototype
§ An object that serves as a basis for

creation of others
o Factory

§ A method or object that creates other
objects

§ Abstract factory
• A superclass factory that can be

extended to provide different sub-
factories, each with different features

o Facade
§ Hiding the complexities of a large body of

code by providing a simplified interface

Today’s Lecture

● Six more design patterns
patterns
o Decorator (DP # 11)
o Composite (DP # 12)
o Proxy (DP # 13)
o Chain of responsibility (DP # 14)
o Observer (DP # 15)
o State (DP # 16)

All images that appears in this slide are from https://images.google.com/

2

3

Pattern: Decorator
objects that wrap around other objects to add

useful features

Source of this slide: CSE331, Washington University

Remember this from IO Streams?

4

● We saw this example in Lecture
13 of combining three classes for
breaking input into tokens:
o Scanner
o BufferedReader
o FileReader

● Normal InputStream class has
only public int read() method to
read one letter at a time

● BufferedReader or Scanner add
additional functionality to read the
stream more easily
o Here, BufferedReader and Scanner

are examples of Decorator objects

public static void main(String args[])
 throws IOException
{
 Scanner in = null;
 PrintWriter out = null;
 try {

in = new Scanner(new BufferedReader(new
 FileReader("input.txt")));

out = new PrintWriter(new
 FileWriter("output.txt"));

while (in.hasNext()) {
out.println(in.next());

}
} finally {

if (in != null)
in.close();

if (out != null)
out.close();

}
}

4
© Vivek Kumar

5

Decorator pattern
● Decorator: an object that modifies behavior of, or

adds features to, another object
o Helps in adding features to an existing simple object without

needing to disrupt the interface that client code expects when
using the simple object

6

interface Vehicle {
 public void paint();
}

6

class Bike implements Vehicle {
 public void paint() {
 System.out.println(“White color Bike”);
 }
}

class Car implements Vehicle {
 public void paint() {
 System.out.println(“White color Car”);
 }
}

//Abstract to disallow clients to instantiate it
abstract class VehicleDecorator implements Vehicle {
 private Vehicle decoratedVehicle;
 public VehicleDecorator(Vehicle v) {
 this.decoratedVehicle = v;
 }
 public void paint() {
 decoratedVehicle.paint();
 }
}

public class Client {
 public static void main(String[] args) {
 Vehicle c1 = new Car();
 c1.paint(); // default white paint
 Vehicle c2 = new BlueVehicleDecorator(new Car));
 c2.paint(); // painted in blue color

 }
}

Decorator Pattern: Vehicle Paint Shop

class BlueVehicleDecorator extends VehicleDecorator {
 public BlueVehicleDecorator(Vehicle v) {
 super(v);
 }
 public void paint() {
 super.paint();
 System.out.println(“Now painted in Blue color”);
 }
}

© Vivek Kumar

Pattern: Composite
objects that can contain their own type

Source of this slide: CSE331, Washington University
7

Composite Pattern
● An object that can be either an individual item or a collection of

many items

o Can be composed of individual items or other composites
o Recursive definition: Objects that can hold themselves

8

Employee Hierarchy

● Composite pattern helps client to ignore
the difference between individual
objects and allow him to treat all objects
in the composite structure uniformly

9

interface Employee {
 public void print();
}

class Manager implements Employee {
 List<Employee> emp = new ArrayList<Employee>();
 public void add(Employee e) { emp.add(e); };
 public void remove(Employee e) { emp.remove(e); }
 public void print() {
 System.out.println(“Manager”);
 for(Employee e : emp) {
 e.print();
 }
 }
}

class Developer implements Employee {
 public void print() {
 System.out.println(“Employee”);
 }
}

public class Client {
 public static void main(String[] args) {
 Employee gm = new Manager();
 Employee emp1 = new Developer();
 Employee manager = new Manager();
 Employee emp2 = new Developer();
 Employee emp3 = new Developer();
 gm.add(emp1); gm.add(manager);
 manager.add(emp2); manager.add(emp3);
 gm.print(); // print all nodes in tree above
 }
}

Source of this figure: https://dzone.com/articles/composite-design-pattern-java-0 © Vivek Kumar

10

Pattern: Proxy
Controls and manages access to objects they

are protecting

Proxy Pattern
● Proxy – provides a surrogate or placeholder for another

object to control access to it
● Examples

o A cheque or credit card is a proxy for what is in our bank account
and provides a means of accessing that cash

o Sometimes real subject is not available, then proxy can behave as
real subject and allow simple operations (avoiding compilation
errors, emulation of real subject, etc.)

o Using a proxy to query a database but without having the ability to
modify it

11

Implementing Proxy Firewall for Intranet

● Users who want to login to company’s intranet have to first
authenticate themselves with the proxy firewall

● How to implement this software using proxy design
pattern?

12
© Vivek Kumar

13

interface IntranetAccess {
 public void getAccess(String name);
}

class Intranet implements IntranetAccess {
 public void getAccess(String name) {
 System.out.println(“Unrestricted access
 granted to “+
name);
 }
}

public class Client {
 public static void main(String [] args) {
 String name = args[0];
 IntranetAccess proxy = new ProxyFirewall();
 proxy.getAccess(name);
 }
}

import java.util.*;
class ProxyFirewall implements IntranetAccess {
 private static List<String> db = new ArrayList<String>();

 public void getAccess(String name) {
 if(db.contains(name)) {
 (new Intranet()).getAccess(name);
 }
 else {
 System.out.println(“Access denied to “+ name);
 }
 }

 public void add(String name) {
 db.add(name);
 }
 // Some more code that is elided
}

Implementing Proxy Firewall for Intranet

© Vivek Kumar

14

Pattern: Chain of Responsibility
Gives more than one object an opportunity to
handle a request by linking receiving objects

together

Chain of Responsibility Pattern
● Avoid coupling sender of request to its receiver by giving

more than one object chance to handle request. Chain
receiving objects and pass request along until an object
handles it

● Scenario for usage
o When more than one object may handle a particular request and

the handler isn’t known ahead of time
o When you want to issue a request to one of several objects without

specifying the receiver explicitly
● Example

o Pipeline assembly for car manufacturing

15

Example: Implementing Bank ATM Software
● An ATM machine contains

notes in fixed
denominations, e.g., INR
2000, 500, 200 and 100

● Withdrawing an amount that
is not in multiples of 100 will
not work

● Withdrawing amount less
than INR 2000 could
dispense notes of 500, 200
and 100 denominations

● How to implement the note
dispensing software for this
ATM in an object-oriented
fashion?

16
© Vivek Kumar

Bank ATM Software

17

abstract class NoteDispenser {
 private NoteDispenser chain;
 private int denom;
 public NoteDispenser(int d) { denom = d; }
 public void setNextChain(NoteDispenser c) {
 chain = c;
 }
 public void dispense(int amount) {
 if(amount >= denom) {
 int bills = amount / denom;
 amount = amount % denom;
 System.out.println(denom+” Bills =
“+bills);
 }
 if(amount > 0) { chain.dispense(amount); }
 }
}

class INR2000Dispenser extends NoteDispenser {
 public INR2000Dispenser() { super(2000); }
}

class INR500Dispenser extends NoteDispenser {
 public INR500Dispenser() { super(500); }
}

class INR200Dispenser extends NoteDispenser {
 public INR200Dispenser() { super(200); }
}

class INR100Dispenser extends NoteDispenser {
 public INR100Dispenser() { super(100); }
}

public class ATMMachine {
 private NoteDispenser chain1;
 public ATMMachine() {
 chain1 = new INR2000Dispenser();
 NoteDispenser chain2 = new INR500Dispenser();
 NoteDispenser chain3 = new INR200Dispenser();
 NoteDispenser chain4 = new INR100Dispenser();
 chain1.setNextChain(chain2);
 chain2.setNextChain(chain3);
 chain3.setNextChain(chain4);
 }
 public void withdraw(int amount) {
 chain1.dispense(amount);
 }
 public static void main(String[] args) {
 ATMMachine atm = new ATMMachine();
 int amount = Integer.parseInt(args[0]);
 if(amount % 100 == 0) { atm.withdraw(amount); }
 }
}© Vivek Kumar

18

Pattern: Observer
objects that listen for updates to the state of

others

Source of this slide: CSE331, Washington University

19

Observer Pattern
● Defines a “one-to-many” dependency between objects so that

when one object changes state, all its dependents are notified
and updated automatically
o Dependence mechanism
o Publish-subscribe
o Broadcast
o Change-update

● Subject
o the object which will frequently change its state and upon which other

objects depend
● Observer

o the object which depends on a subject and updates according to its
subject's state

Source: http://slideplayer.com/slide/10731275/

20

Observer Pattern - Working
● A number of Observers “register” to receive notifications of changes to

the Subject. Observers are not aware of the presence of each other

● When a certain event or “change” in Subject occurs, all Observers are
“notified‘

Source: http://slideplayer.com/slide/10731275/

21

Observer Pattern Example

Source: http://slideplayer.com/slide/10731275/

22

Observer Pattern Example

● We saw the code for this example in Lecture 20
o Marge and Simpson acts as both Observer and Subject

23

interface Subject {
 public void add(Observer o);
 public void remove(Observer o);
 public void announce();
 public String getUpdate();
 public void startPoll(String msg);
}

interface Observer {
 public void update();
}

class Backpack implements Subject {
 private List<Observer> obsvs = new ArrayList<Observer>();
 private String discussion;
 public String getUpdate() { return discussion; }

 public void add(Observer o) {
 if(!obsvs.contains(o)) obsvs.add(o);

}
 public void remove(Observer o) { obsvs.remove(o); }
 public void startPoll(String msg) {

discussion = msg;
announce();

}
 public void announce() {
 for (Observer obj : obsvs) {

obj.update();
}

}
}

class Student implements Observer {
 private Subject course;
 public Student(Subject s) { course = s; }
 public void update() {
 String msg = course.getUpdate();
 System.out.println("New message: "+msg);

}
}

public class CSE201 {
 public static void main(String[] args) {
 Subject cse201 = new Backpack();

for(int i=0; i<5; i++) {
 Observer student = new Student(cse201);

cse201.add(student);
}

 cse201.startPoll("Do you want a bonus quiz?");
}

}

Let’s Implement Backpack Poll

● Be careful about thread safety if
you are using multithreading to
implement this design pattern

© Vivek Kumar

24

Pattern: State
Changing behavior based on state

25

State Pattern
● Allows an object to alter its behavior when its internal state

changes
● Uses Polymorphism to define different behaviors for

different states of an object

Acknowledgement: all slides on state pattern from http://slideplayer.com/slide/3152957/

26

When to Use State Pattern
● State pattern is useful

when there is an object
that can be in one of
several states, with
different behavior in each
state

● To simplify operations that
have large conditional
statements that depend
on the object’s state

if (myself = bored) then
{

 watchMovie();

 ….
}

else if (myself = sad) then

{

 goOnDrive();
 ….

}

else if (myself = happy) then
{

 ….

 Acknowledgement: all slides on state pattern from http://slideplayer.com/slide/3152957/

27

How is STATE Pattern Implemented ?

Acknowledgement: all slides on state pattern from http://slideplayer.com/slide/3152957/

● “Context” class
o Represents the interface

to the outside world
● “State” abstract class

o Base class which defines
the different states of the
“state machine”

● “Derived” classes from
State class
o Defines the true nature of

the state that the state
machine can be in

● Context class maintains
a pointer to the current
state. To change the
state of the state
machine, the pointer
needs to be changed

What we Covered in GoF Patterns
● Creational Patterns (abstracting the object-instantiation process)

o Factory Method Abstract Factory Singleton
o Builder Prototype

● Structural Patterns (how objects/classes can be combined)
o Adapter Bridge Composite
o Decorator Facade Flyweight
o Proxy

● Behavioral Patterns (communication between objects)
o Command Interpreter Iterator
o Mediator Observer State
o Strategy Chain of Responsibility Visitor
o Template Method

In 1990 a group called the Gang of Four or "GoF” (Gamma, Helm, Johnson, Vlissides) compile a catalog of design patterns in the book “Design
Patterns: Elements of Reusable Object-Oriented Software”

Our Current Status (We are done!!)
● CSE201 Post Conditions

1. Students are able to demonstrate the knowledge of basic
principles of Object Oriented Programming such as
encapsulation (classes and objects), interfaces,
polymorphism and inheritance; by implementing programs
ranging over few hundreds lines of code

2. Implement basic event driven programming, exception
handling, and threading
§ Already covered little bit of event driven programming in

refresher module (Day 3) but we will see more
3. Students are able to analyze the problem in terms of use

cases and create object oriented design for it. Students
are able to present the design in UML
§ Already covered little bit of UML but we will see more

4. Students are able to select and use a few key design
pattern to solve a given problem in hand

5. Students are able to use common tools for testing (e.g.,
JUnit), debugging, and source code control as an integral
part of program development

Remaining Two Lectures
● Lecture 25

o End semester review lecture part-1
§ Generic programming
§ I/O streams
§ UML
§ Event driven programming

● Lecture 26
o End semester review lecture part-2

§ Multithreading
§ Mutual exclusion

No recap on design patterns as we just completed it.
No more recap on inheritance, interfaces, polymorphism as we went
through it several times during lectures on design patterns

30

