
Lecture 25: Endterm Review-1
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE201: Advanced Programming

Today’s (Review) Lecture
1. Generic programming
2. IO Streams
3. UML
4. Event driven programming

1
© Vivek Kumar

Topic-1: Generic Programming

2

Generics
● Enables types (classes and interfaces) to

be parameters when defining classes,
interfaces, and methods

3

public interface Pair <K, V> {
 public K getKey();
 public V getValue();
}

public class MyPair <K, V> implements Pair<K, V> {
 private K key;
 private V value;
 public MyPair(K k, V v) { key=k; value=v; }
 public K getKey() { return key; }
 public V getValue() { return value; }

 public static void main(String[] args) {
 MyPair<Integer, String> p1 = new MyPair<Integer, String>(201, “Advanced
Programming”);
 MyPair<Integer, String> p2 = new MyPair<Integer, Integer>(0, 1);
 MyPair<Integer, String> p3 = new MyPair<Integer, Double>(0, 0.11);
 }
}

Motivation (1/3): Elimination of Casts
● If we follow this

technique to code then
we can’t avoid the two
typecasting shown here
o Although its annoying but

no other work around!

4

......

public int countCoins(int value, List coins) {

 int total=0;
 Iterator it = coins.iterator();
 while(it.hasNext()) {
 Coin coin = (Coin) it.next();
 if(coin.denomination() == value) total++;
 }
 return total;
}

public static void main(String[] args) {

 List coins = new LinkedList();
 coins.add(new Coin(1));
 coins.add(new Coin(2));
 coins.add(new Coin(10));

 Coin lowest = (Coin) coins.get(0);
}

© Vivek Kumar

Motivation (2/3): Cleaner Code
● However, using generic

programming, we can
avoid typecasting at all
places!

● Also, we can iterate over
the elements in a much
cleaner way

● Generic programming is
also called as “Parametric
Polymorphism”

5

......

public int countCoins(int value, List<Coin> coins) {

 int total=0;
 for(Coin coin : coins) {
 if(coin.denomination() == value) total++;
 }
 return total;
}

public static void main(String[] args) {

 List<Coin> coins = new LinkedList<Coin>();
 coins.add(new Coin(1));
 coins.add(new Coin(2));
 coins.add(new Coin(10));

 Coin lowest = coins.get(0);
}

© Vivek Kumar

Motivation (3/3): Stronger Type Checks at
Compilation

● Generic programming
can help us locate errors
at compile time rather
than at runtime

6

......

public static void main(String[] args) {

 List coins = new LinkedList();
 // NO CHECK, UNSAFE!
 coins.add(“ABCDEF”);

 // RUNTIME ERROR!
 Coin lowest = (Coin) coins.get(0);
}

......

public static void main(String[] args) {

 List<Coin> coins = new LinkedList<Coin>();
 // COMPILE TIME ERROR!
 coins.add(“ABCDEF”);

 // RUNTIME IS SAFE!
 Coin lowest = coins.get(0);
}

© Vivek Kumar

Restrictions (Compile time checks)
1. Type parameters cannot be instantiated with primitive types

o MyGenericList <int> var = new MyGenericList<Integer>;

2. Instantiating type variable is not allowed
o T my_var = new T();

3. Cannot use instanceof with parameterized types
o public <T> doSomething(List<T> list) {
 if(list instanceof ArrayList<Integer>) { …. }
 }

4. Type variables are not valid in static contexts of generic classes
o public static void doSomething(T a) { ... }

5. Generic does not support sub-typing

7
© Vivek Kumar

● Upper bounded
wildcard
o Here the print

method will only
accept ArrayList of
Car type or its
subclass type

● Lower bounded
wildcard
o Here the print

method will only
accept ArrayList of
Integer or any Type
that is supertype of
Integer
§ Integer
§ Number
§ Object 8

public class Main {

 static void print(ArrayList<? extends Car> list){

 }
 public static void main(String[] arg){

 }
}

© Vivek Kumar

Upper Bounded and Lower Bounded Wildcard

public class Main {

 static void print(ArrayList<? super Integer> list){

 }
 public static void main(String[] arg){

 }
}

Topic-2: I/O Streams

9

I/O Streams

10

● Reading
open a stream
while more information

read information
close the stream

●Writing
open a stream
while more information

write information
close the stream

• Stream is a sequence of data
• Flows in/out the program to/from

an external source such as file,
network, console, etc.

• Types
• Byte stream

• Low level I/O (binary files)
• Character stream

• Processing text files

Combining Streams into Chains

11

●Here we are combining three
classes for breaking input into
tokens:
o Scanner
o BufferedReader
o FileReader

●BufferedReader will read one
line at a time and Scanner will
be able to parse this line by
white space separated tokens

public static void main(String args[])
 throws IOException
{
 Scanner in = null;
 PrintWriter out = null;
 try {

in = new Scanner(new BufferedReader(new
 FileReader("input.txt")));

out = new PrintWriter(new
 FileWriter("output.txt"));

while (in.hasNext()) {
out.println(in.next());

}
} finally {

if (in != null)
in.close();

if (out != null)
out.close();

}
}

© Vivek Kumar

Serialization and Deserialization
● Serialization in Java is a

mechanism of writing the state
of an object into a byte stream
o Note: it’s the object state that is

recorded but not the actual class
definition (“class file”)

● The reverse operation is called
deserialization

● Some usage
o Storing live objects in a file
o Hibernating applications
o Moving object state over the

network (marshaling)
12

© Vivek Kumar

13

1. import java.io.*;
2.
3. class Manager implements Serializable {
4. private String name;
5. public Manager(String n) { }
6. }

7. public class Main {
8. public static void serialize()
9. throws IOException {
10. Manager s1 = new Manager("Amy");
11. ObjectOutputStream out = null;
12. try {
13. out = new ObjectOutputStream (
14. new FileOutputStream("out.txt"));
15. out.writeObject(s1);
16. } finally {
17. out.close();
18. }
19. }
20.
/* Continued on RHS window */

Example: Serializing and Deserializing
/* Continued from LHS window */

21. public static void deserialize()
22. throws IOException, ClassNotFoundException {
23. ObjectInputStream in = null;
24. try {
25. in = new ObjectInputStream (
26. new FileInputStream("out.txt"));
27. Manager s1 = (Manager) in.readObject();
29. } finally {
30. in.close();
31. }
32. }
33.
34. public static void main(String[] args)
35. throws IOException,ClassNotFoundException {
36.
37. serialize();
39. deserialize();
40. }
41. } /* End of Main class */

© Vivek Kumar

Suppose you have a Client.java that only has the above
deserializes() method. Compilation of Client.java will generate
two class files Client.class and Manager.class. If you try running
“java Client” without Manager.class in its classpath then
ClassNotFoundException will be thrown at Line 27 above.

Rules for Serialization
● Classes must implement Serializable interface
● All instance type fields in the class should be Serializable

o Otherwise, NotSerializableException will be thrown at runtime
● If parent class implements Serializable interface, subclass need not do

o Otherwise, parent class must have a default constructor. Not doing so will
generate InvalidClassException

● Static fields do not represents object state but they represent class
state, hence no point in serializing them

● If you don’t want any instance type field to be serialized, then mark that
as “transient”

● It is always advisable to declare “serialVersionUID ” in each
serializable class with your own number of choice
o The class declaration might have got updated (e.g. added new fields) after

serialization and now deserializing the object will generate
InvalidClassException 14

© Vivek Kumar

Topic-3: UML

15

What is UML?
● UML stands for Unified Modeling Language
● It’s used to analyze, design, and implement software-

based systems
● We need a modeling language to:

o help develop efficient, effective and correct designs, particularly
Object Oriented designs

o communicate clearly with project stakeholders (concerned parties:
developers, customer, etc)

o give us the “big picture” view of the project

16
© Vivek Kumar

17

UML Diagrams
Three types of UML diagrams that we will cover:

1. Class diagrams: Represents static structure
2. Use case diagrams: Sequence of actions a system performs to

yield an observable result to an actor
3. Sequence diagrams: Shows how groups of objects interact in

some behavior

© Vivek Kumar

18

UML Class Diagram: Static Structure Diagram

**

*

-
-

-
-
-
-

-

-

+
+

+
+
+
+

+
+

+

UML Use Cases
● Use case diagrams describe what a system does

from the standpoint of an external observer. The
emphasis is on what a system does rather
than how

● Document interactions between user(s) and the system
o User (actor) is not part of the system itself
o But an actor can be another system

19

Sample Use Case Diagram

20

Star Customer

Topic-4: Event Driven
Programming using JavaFX

21

JavaFX Application Life Cycle
1. Constructs an instance of the

specified Application class
2. Calls the concrete method

init()
3. Calls

start(javafx.stage.Stage)
method (must be Overridden)

4. Waits for the application to
finish

5. Calls the concrete method
stop()

22

public class HelloWorld extends Application {
 public static void main(String[] args) {
 launch(args);
 }

 //Override the start method in the Application class
 @Override
 public void start(Stage primaryStage) {
 // Set the stage title
 primaryStage.setTitle("MyJavaFX");
 // Create a button and place it in the scene
 Button btn = new Button(”Hello World");
 Scene scene = new Scene(btn, 200, 250);
 // Place the scene in the stage
 primaryStage.setScene(scene);
 // Display the stage
 primaryStage.show();
 }

}

© Vivek Kumar

How to Handle GUI Events
● Source object: button

o An event is generated by external user actions such as mouse
movements, mouse clicks, or keystrokes

● An event can be defined as a type of signal to the program
that something has happened

● Listener object contains a method for processing the
event.

23

Example: Event Programming

24

● Using anonymous inner
classes for creating listener
objects
o It combines declaring an inner

class and creating an instance of
the class in one step

o An anonymous inner class must
always extend a superclass or
implement an interface, but it
cannot have an explicit extends
or implements clause
§ An anonymous inner class must

implement all the abstract
methods in the superclass or in
the interface

o An anonymous inner class
always uses the no-arg
constructor from its superclass to
create an instance

public class HelloWorld extends Application {
 public static void main(String[] args) {
 launch(args);
 }

 @Override
 public void start(Stage primaryStage) { // entry point
 primaryStage.setTitle("Hello World!");
 Button btn = new Button(“Say Hello World”);

 btn.setOnAction(new EventHandler<ActionEvent>() {

 @Override
 public void handle(ActionEvent event) {
 System.out.println("Hello World!");
 }
 });
 StackPane pane = new StackPane();
 pane.getChildren().add(btn);
 Scene scene = new Scene(pane, 200, 50);
 // Place the scene in the stage
 primaryStage.setScene(scene);
 // Display the stage
 primaryStage.show();
 }
}

© Vivek Kumar

Next Lecture
● Endterm review lecture-2 (Last remaining lecture)

o Multithreading
o Mutual exclusion
o No review on design pattern as we recently completed it, and also

no review on inheritance, interfaces, and polymorphism as we
covered these topics extensively while discussing design patterns

● Bonus quiz
o Entire syllabus

25

