
Lecture 26: Endterm Review-2
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE201: Advanced Programming

Topic-5: Multithreading

1

Processes and Threads

2

● Processes are heavyweight
o Personal address space (allocated

memory)
o Communication across process

always requires help from Operating
System

● Threads are lightweight
o Share resources inside the parent

process (code, data and files)
§ Easy to communicate across sibling

threads!
o They have their own personal stack

(local variables, caller-callee
relationship between function)
§ Each thread is assigned a different

job in the program

● A process can have one or more
threads

© Vivek Kumar

Creating Threads in Java
● There are two ways to create your own Thread object

o Implementing the Runnable interface
o Subclassing the Thread class and instantiating a new object of

that class

● In both cases the run() method should be implemented

© Vivek Kumar

Parallel Array Sum By Implementing Runnable Interface

4

public class ArraySum implements Runnable {
 int[] array;
 int sum, low, high;
 public ArraySum(int[] arr, int l, int h) {
 array=arr; sum=0; low=l; high=h;
 }
 //assume array.length%2=0
 public void run() {
 for(int i=low; i<high; i++)
 sum += array[i];
 }
 public int getResult() { return sum; }
 public static void main(String[] args)
 throws InterruptedException {
 int size; int[] array; //allocated (size) & initialized
 ArraySum left = new ArraySum(array, 0, size/2);
 ArraySum right = new ArraySum(array, size/2, size);
 Thread t1 = new Thread(left);
 Thread t2 = new Thread(right);
 t1.start(); t2.start();
 t1.join(); t2.join();
 int result = left.getResult() + right.getResult();
 }
}

© Vivek Kumar

● Implement java.lang.Runnable
interface

● Implement the method “public void
run()”

● Create two threads (t1 & t2)
o t1 will calculate the sum of left half

of the array and t2 will calculate
the sum of right half of array
§ Before creating t1 and t2 we must

create objects of Runnable type
that should be passed to the
Thread constructor

● Start both the threads by calling the
start() method in Thread class

● Wait for both the threads to complete
their execution by calling join() method

● Sum the partial results from each
threads to get the final results

Parallel Array Sum By Subclassing Thread
● Only three changes are

required
1. Instead of implementing

Runnable, now the
ArraySum class will
extend Thread class

2. Override the run()
method as Thread class
also has empty-body
implementation of run()

3. ArraySum objects are
themselves Thread
objects and hence now
no need to explicitly call
constructor of Thread
class

5

public class ArraySum extends Thread {
 int[] array;
 int sum, low, high;
 public ArraySum(int[] arr, int l, int h) {
 array=arr; sum=0; low=l; high=h;
 }
 //assume array.length%2=0
 @Override
 public void run() {
 for(int i=low; i<high; i++)
 sum += array[i];
 }
 public int getResult() { return sum; }
 public static void main(String[] args)
 throws InterruptedException {
 int size; int[] array; //allocated (size) & initialized
 ArraySum t1 = new ArraySum(array, 0, size/2);
 ArraySum t2 = new ArraySum(array, size/2, size);
 t1.start(); t2.start();
 t1.join(); t2.join();
 int result = t1.getResult() + t2.getResult();
 }
}

© Vivek Kumar

Runnable v/s Subclassing Thread
● Multiple inheritance is not allowed in Java hence if our

ArraySum class extends Thread then it cannot extend any
other class. By implementing Runnable our ArraySum can
easily extend any other class

● Subclassing is used in OOP to add additional feature,
modifying or improving behavior. If no modifications are
being made to Thread class then use Runnable interface

● Thread can only be started once. Runnable is better as
same object could be passed to different threads

● If just run() method has to be provided then extending
Thread class is an overhead for JVM

6
© Vivek Kumar

Introduction to Thread-Pool

● Thread-pool consists of a fixed number of threads
o Provided by the Java runtime

● User application creates “task” rather than threads
● These tasks are added to a task-pool
● Free threads from thread-pool takes out a task from task-pool and execute it

7
Fig. Source: http://www.geek-programmer.com/what-are-thread-pools-in-java/

Parallel Array Sum Using Java ExecutorServices
● An ExecutorService is a

group of thread objects (thread
pool), each running some
variant of the following
o while (....) { get work and

run it; }
● ExecutorService methods:

o isTerminated
§ Returns true if all tasks are

terminated following the
shutdown

o awaitTermination
§ Blocks until all tasks have

completed execution after a
shutdown request

● Important that you wait for all
tasks to terminate after a
shutdown request 8

public class ArraySum implements Runnable {
 int[] array;
 int sum, low, high;
 public ArraySum(int[] arr, int l, int h) {
 array=arr; sum=0; low=l; high=h;
 }
 //assume array.length%2=0
 public void run() {
 for(int i=low; i<high; i++)
 sum += array[i];
 }
 public int getResult() { return sum; }
 public static void main(String[] args)
 throws InterruptedException {
 int size; int[] array; //allocated (size) & initialized
 ExecutorService exec = Executors.newFixedThreadPool(2);
 ArraySum left = new ArraySum(array, 0, size/2);
 ArraySum right = new ArraySum(array, size/2, size);
 exec.execute(left); exec.execute(right);
 if(!exec.isTerminated()) {
 exec.shutdown();
 exec.awaitTermination(5L, TimeUnit.SECONDS);
 }
 int result = left.getResult() + right.getResult();
 }
}

© Vivek Kumar

ForkJoinPool for Recursive Divide and
Conquer Pattern

9

● Fibonacci class could
also extend the class
RecursiveAction
o RecursiveAction

represents a task that
doesn’t return any result

● RecursiveTask<T> is
better suited in scenarios
where there is a need to
return results from each
task (same return type for
all tasks)

import java.util.concurrent.*;

public class Fibonacci extends RecursiveTask<Integer> {
 int n;
 public Fibonacci(int _n) { n=_n; }

 public Integer compute() {
 if(n<2) return n;

 Fibonacci left = new Fibonacci(this.n-1);
 Fibonacci right = new Fibonacci(this.n-2);
 left.fork();
 return right.compute() + left.join();
 }
 public static void main(String[] args) {
 ForkJoinPool pool = new ForkJoinPool(2);
 Fibonacci task = new Fibonacci(40);
 int result = pool.invoke(task);
 }
}

© Vivek Kumar

Topic-6: Mutual Exclusion

10

Mutual Exclusion

11

● Critical section: a block of code that access shared
modifiable data or resource that should be operated on
by only one thread at a time

● Mutual exclusion: a property that ensures that a
critical section is only executed by a thread at a time.
o Otherwise it results in a race condition!

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor
Programming” by Maurice Herlihy and Nir Shavit 11

Implementing Mutual Exclusion
● Critical section

o The synchronized methods
(or block) define the critical
sections

o By using synchronized
keyword we achieved mutual
exclusion

● volatile keyword for avoiding
memory consistency issues
o For faster data access, memory

referenced by a CPU is first
copied from main memory
(RAM) onto its local cache

o The updated memory content
on cache is not immediately
written back to RAM

12

class Counter implements Runnable {
 volatile int counter = 0;
 // Both the versions of run method below is correct
 public synchronized void run() { counter++; }
 /* public void run() { synchronized(this) {counter++;} } */
 public static void main(String[] args)
 throws InterruptedException {
 ExecutorService exec =
 Executors.newFixedThreadPool(2);

 Counter task = new Counter();
 for(int i=0; i<1000; i++) {
 exec.execute(task);
 }

 if(!exec.isTerminated()) {
 exec.shutdown();
 exec.awaitTermination(5L,TimeUnit.SECONDS);
 }

 System.out.println(task.counter);
 }
}

© Vivek Kumar

Monitors
● Each object has a “monitor” that is a

token used to determine which
application thread has control of a
particular object instance

● In execution of a synchronized method
(or block), access to the object monitor
(lock) must be gained before the
execution

● Access to the object monitor is queued
● Demerits

o Does not guarantee fairness
§ Lock might not be given to the longest

waiting thread
o Might lead to starvation

§ A thread can indefinitely hold the monitor
lock for doing some big computation while
other threads keep waiting to get this
monitor lock

§ Not possible to interrupt the waiting thread
§ Not possible for a thread to decline waiting

for the lock if its unavailable

13
© Vivek Kumar

Demerits of Monitor Lock
● Does not guarantee fairness

o Lock might not be given to the longest waiting thread

● Might lead to starvation
o A thread can indefinitely hold the monitor lock for doing some big

computation while other threads keep waiting to get this monitor
lock

o Not possible to interrupt the thread who owns the lock
o Not possible for a thread to decline waiting for the lock if its

unavailable

14
© Vivek Kumar

15

Producer Consumer Application Using Wait/Notify
● The wait() method is part of the class java.lang.Object
● It requires a lock on the object’s monitor to execute
● It must be called from a synchronized method, or from a synchronized segment of code

● wait() causes the current thread to relinquish the CPU and wait until another thread invokes the
notify() method or the notifyAll() method for this object

● Upon call for wait(), the thread releases ownership of this monitor and waits until another thread
notifies the waiting threads of the object

© Vivek Kumar

Deadlock Avoidance

16

A B

B A

T1

T2

class NEFTtransfer {
 Account A, B;
 int amount;
 // prone to deadlock
 void run() {
 synchronized(A) { // A locked
 synchronized(B) { // B locked
 A.debit(amount);
 B.credit(amount);
 } // B unlocked
 } // A unlocked
 }
}

● Deadlock occurs when multiple
threads need the same set of
locks but obtain them in
different order

● Deadlock avoidance
o Lock ordering

§ Ensure that all locks are taken in
same order by any thread
• E.g., in the code on left, first sort

both the lock objects (e.g. based
on account id of “A” and “B”
accounts) and then always lock
in a particular order followed by
unlock in reverse order

© Vivek Kumar

I hope you enjoyed the course..

All the best for your end semester exam
and final project deadline!

17

