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Source: https://computing.linl.gov/tutorials/parallel_comp/

What is Parallel Programming?
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Course Overview

1. Why the hell do we need multicore processors
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Why Parallel Programming?
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Course Overview

1. Why the hell do we need multicore processors
2. How can we decompose a sequential program into a parallel program
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Can we Parallelize these Programs?

uint64_t array_sum(uinté64_t* array, uint64 _t size) {
uinté4_t sum = 0;
for(uint64 t i1=0; i<size; i++) {
sum = sum + array[i];

}

return sum;

uint64 t fibonacci(uint64 t n) {
if (n < 2) {
return n;
} else {
uinté4 t x = fibonacci(n-1);
uinté4 t y = fibonacci(n-2);
return (X + y);
}
} 4
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Course Overview

1. Why the hell do we need multicore processors
2. How can we decompose a sequential program into a parallel program
3.  What are the different parallel programming models
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Which all Parallel Programming Models?

Shared memory parallel * Distributed memory
programming models (4) parallel programming (4)
— Pthread, OpenMP, and — MPI, MPI4+OpenMP,
Habanero-C/C++ library UPC++, and
(HClib) HabaneroUPC++

— ForkJoinPool (Java)
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4.

Course Overview

Why the hell do we need multicore processors
How can we decompose a sequential program into a parallel program

What are the different parallel programming models
— Shared memory
— Distributed memory
— Hybrid shared and distributed memory
Productivity and performance of different parallel programming models
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Productivity and Performance

* Productivity = how easily you can convert a sequential
program into a parallel program

* Performance = how you can write a parallel program
that takes minimum time to execute

uinté4_t array sum(uint64_t* array, uint64 t size) {
uinté4 _t sum = 0;
for(uint64 t i=0; i<size; i++) {
sum = sum + array[i];

}
return sum;
}
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4.

Course Overview

Why the hell do we need multicore processors
How can we decompose a sequential program into a parallel program
What are the different parallel programming models

— Shared memory

— Distributed memory

— Hybrid shared and distributed memory

Productivity and performance of different parallel programming models

How to make effective use of available multicore processors

— Designing thread pool based runtimes that uses load balancing algorithms
such as work-stealing and work-sharing
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Thread Pool Based Load Balancing Runtimes

Thread pool

Task Queue Thread 1
Thread 3
Task

Partially completed t!asks

* How to design a thread pool?
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Course Overview

1. Why the hell do we need multicore processors
2. How can we decompose a sequential program into a parallel program

3. What are the different parallel programming models
— Shared memory
— Distributed memory
— Hybrid shared and distributed memory
4. Productivity and performance of different parallel programming models

5.  How to make effective use of available multicore processors

— Designing thread pool based runtimes that uses load balancing algorithms
such as work-stealing and work-sharing

6. Data flow programming model using C++11 futures, promises, and task
dependencies
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Dataflow Programming
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4.

6.

7.

Course Overview

Why the hell do we need multicore processors
How can we decompose a sequential program into a parallel program

What are the different parallel programming models
— Shared memory
— Distributed memory
— Hybrid shared and distributed memory

Productivity and performance of different parallel programming models

How to make effective use of available multicore processors

— Designing thread pool based runtimes that uses load balancing algorithms
such as work-stealing and work-sharing

Data flow programming model using C++11 futures, promises, and task
dependencies

Mutual exclusion in tasks based programming model
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Mutual Exclusion

counter++;




Course Overview

1. Why the hell do we need multicore processors
2. How can we decompose a sequential program into a parallel program

3. What are the different parallel programming models
— Shared memory
— Distributed memory
— Hybrid shared and distributed memory

4. Productivity and performance of different parallel programming models

5.  How to make effective use of available multicore processors

— Designing thread pool based runtimes that uses load balancing algorithms
such as work-stealing and work-sharing

6. Data flow programming model using C++11 futures, promises, and task
dependencies

7. Mutual exclusion in tasks based programming model

8. How does caches affect the performance of parallel program on a shared
memory architectures
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Effects of Caches on the Performance of
Parallel Program
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Course Overview

1. Why the hell do we need multicore processors
2. How can we decompose a sequential program into a parallel program

3. What are the different parallel programming models

— Shared memory

— Distributed memory

— Hybrid shared and distributed memory
4. Productivity and performance of different parallel programming models
5.  How to make effective use of available multicore processors

— Designing thread pool based runtimes that uses load balancing algorithms
such as work-stealing and work-sharing

6. Data flow programming model using C++11 futures, promises, and task
dependencies

7. Mutual exclusion in tasks based programming model

8. How does caches affect the performance of parallel program on a shared
memory architectures

9. Student run lectures (1-2) for research paper presentations
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Course Prerequisites

* Programming in C/C++ is a must!

— If you don’t know C/C++ then you should be
confident that you can pick it up on your own

* Basics of Operating Systems and Data-
structures

We will strictly follow the IIITD plagiarism
policy. No excuses if you get caught in
plagiarism
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Textbook

None
— Be sure to attend all the lectures!

Course material derived from multiple sources

Course notes / references will be provided
depending on the lecture

References will also be mentioned on the last
slide in each lecture
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Course Logistics

 Machines for your labs and assignments

— You can use your laptop, but would require Linux OS
(or any VM running Linux OS)

* |n case you have problems please feel free to
shoot me an email
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Next Class

e Refresher on processes and threads
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