CSE502: Foundations of Parallel Programming

Lecture 01: Course Overview,
Evaluation Style, Rules and
Regulations

Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in



Source: https://computing.linl.gov/tutorials/parallel_comp/

What is Parallel Programming?

Instructions — One instruction

IIIIIIIIII -] aatime
-l | |=~- Parallel
=~|||||| | |=.- — Multiple

instructions in
- —
mi-2 e

IN 3 2 t1

© Vivek Kumar



Course Overview

1. Why the hell do we need multicore processors

© Vivek Kumar



Why Parallel Programming?

Technology Push Application Push

.
"

1990’s and early 2000s

- Galaxy Formation
' 3" o~ ¥ rin e |

e 3 ‘-_:r}n». =

Rush Hour Traffic Iat Tectonics Weather
A\ = = .
A

Today
(no more free lunch)

CPU C P U %’ Auto Assembly Jet Construction Drive-thru Lunch
GPU  Complex problems require
computation on large-scale data

» Sufficient performance available only
0s through massive parallelism

DSP

© Vivek Kumar



Course Overview

1. Why the hell do we need multicore processors
2. How can we decompose a sequential program into a parallel program

© Vivek Kumar



Can we Parallelize these Programs?

uint64_t array_sum(uinté64_t* array, uint64 _t size) {
uinté4_t sum = 0;
for(uint64 t i1=0; i<size; i++) {
sum = sum + array[i];

}

return sum;

uint64 t fibonacci(uint64 t n) {
if (n < 2) {
return n;
} else {
uinté4 t x = fibonacci(n-1);
uinté4 t y = fibonacci(n-2);
return (X + y);
}
} 4

© Vivek Kumar



Course Overview

1. Why the hell do we need multicore processors
2. How can we decompose a sequential program into a parallel program
3.  What are the different parallel programming models

© Vivek Kumar



Which all Parallel Programming Models?

Shared memory parallel * Distributed memory
programming models (4) parallel programming (4)
— Pthread, OpenMP, and — MPI, MPI4+OpenMP,
Habanero-C/C++ library UPC++, and
(HClib) HabaneroUPC++

— ForkJoinPool (Java)

)
I \
'

PE O 21=71 PE n-1
\ \
= %

Network A \
=7 "Network

Source: http://cnx.org/contents/82d83503-3748-4a69-8d6c-50d34a40c2e7 @7
© Vivek Kumar



4.

Course Overview

Why the hell do we need multicore processors
How can we decompose a sequential program into a parallel program

What are the different parallel programming models
— Shared memory
— Distributed memory
— Hybrid shared and distributed memory
Productivity and performance of different parallel programming models

© Vivek Kumar



Productivity and Performance

* Productivity = how easily you can convert a sequential
program into a parallel program

* Performance = how you can write a parallel program
that takes minimum time to execute

uinté4_t array sum(uint64_t* array, uint64 t size) {
uinté4 _t sum = 0;
for(uint64 t i=0; i<size; i++) {
sum = sum + array[i];

}
return sum;
}
11 M |\/|p|‘.>\) - . RS v ;
I..I ForkJoinPool ? MPI+OpenMP ? g ; | .
L. | OpenMP ? UPC++ ?
Multicore CPU Habanero-C ? HabaneroUPC++ ?

© Vivek Kumar



4.

Course Overview

Why the hell do we need multicore processors
How can we decompose a sequential program into a parallel program
What are the different parallel programming models

— Shared memory

— Distributed memory

— Hybrid shared and distributed memory

Productivity and performance of different parallel programming models

How to make effective use of available multicore processors

— Designing thread pool based runtimes that uses load balancing algorithms
such as work-stealing and work-sharing

© Vivek Kumar

11



Thread Pool Based Load Balancing Runtimes

Thread pool

Task Queue Thread 1
Thread 3
Task

Partially completed t!asks

* How to design a thread pool?

12
© Vivek Kumar



Course Overview

1. Why the hell do we need multicore processors
2. How can we decompose a sequential program into a parallel program

3. What are the different parallel programming models
— Shared memory
— Distributed memory
— Hybrid shared and distributed memory
4. Productivity and performance of different parallel programming models

5.  How to make effective use of available multicore processors

— Designing thread pool based runtimes that uses load balancing algorithms
such as work-stealing and work-sharing

6. Data flow programming model using C++11 futures, promises, and task
dependencies

13
© Vivek Kumar



Dataflow Programming

© Vivek Kumar



4.

6.

7.

Course Overview

Why the hell do we need multicore processors
How can we decompose a sequential program into a parallel program

What are the different parallel programming models
— Shared memory
— Distributed memory
— Hybrid shared and distributed memory

Productivity and performance of different parallel programming models

How to make effective use of available multicore processors

— Designing thread pool based runtimes that uses load balancing algorithms
such as work-stealing and work-sharing

Data flow programming model using C++11 futures, promises, and task
dependencies

Mutual exclusion in tasks based programming model

© Vivek Kumar

15



Mutual Exclusion

counter++;




Course Overview

1. Why the hell do we need multicore processors
2. How can we decompose a sequential program into a parallel program

3. What are the different parallel programming models
— Shared memory
— Distributed memory
— Hybrid shared and distributed memory

4. Productivity and performance of different parallel programming models

5.  How to make effective use of available multicore processors

— Designing thread pool based runtimes that uses load balancing algorithms
such as work-stealing and work-sharing

6. Data flow programming model using C++11 futures, promises, and task
dependencies

7. Mutual exclusion in tasks based programming model

8. How does caches affect the performance of parallel program on a shared
memory architectures

17
© Vivek Kumar



Effects of Caches on the Performance of
Parallel Program

Thread 0 Thread 1
CPUO CPU 1
] ]

Cache Line Cache Line
F H EEEEEE
Cache /\. Cache
] 1

Memory




Course Overview

1. Why the hell do we need multicore processors
2. How can we decompose a sequential program into a parallel program

3. What are the different parallel programming models

— Shared memory

— Distributed memory

— Hybrid shared and distributed memory
4. Productivity and performance of different parallel programming models
5.  How to make effective use of available multicore processors

— Designing thread pool based runtimes that uses load balancing algorithms
such as work-stealing and work-sharing

6. Data flow programming model using C++11 futures, promises, and task
dependencies

7. Mutual exclusion in tasks based programming model

8. How does caches affect the performance of parallel program on a shared
memory architectures

9. Student run lectures (1-2) for research paper presentations

19
© Vivek Kumar



Course Prerequisites

* Programming in C/C++ is a must!

— If you don’t know C/C++ then you should be
confident that you can pick it up on your own

* Basics of Operating Systems and Data-
structures

We will strictly follow the IIITD plagiarism
policy. No excuses if you get caught in
plagiarism

© Vivek Kumar

20



Textbook

None
— Be sure to attend all the lectures!

Course material derived from multiple sources

Course notes / references will be provided
depending on the lecture

References will also be mentioned on the last
slide in each lecture

21
© Vivek Kumar



Course Logistics

 Machines for your labs and assignments

— You can use your laptop, but would require Linux OS
(or any VM running Linux OS)

* |n case you have problems please feel free to
shoot me an email

22
© Vivek Kumar



Next Class

e Refresher on processes and threads

© Vivek Kumar

23



