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Last Class
• Why parallel programming

– Technological push
• Multicore processors

– Application push
• Compute intensive applications operating on large data

• Why multicores?
– Moore’s law and Dennard scaling
– Multicore saves power

• Parallel hardware in the large
– Multicores are also available in modern supercomputers

• FLOPS – theoretical peak performance of a computers for 
scientific computing

• Different parallel programming models
– Automatic 
– Shared memory
– Distributed memory
– Hybrid shared and distributed memory



Today’s Class
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• Decomposition of sequential program into 
parallel program
– Tasks and decomposition
– Amdahl’s law
– Tasks and mapping
– Decomposition techniques
• Recursive
• Data
• Exploratory
• Speculative
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Concurrency v/s Parallelism
• Concurrency 
• “Dealing” with lots of things at once 

• Parallelism 
• “Doing” lots of things at once
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Concurrency v/s Parallelism

• Concurrency
– Refers to tasks that appear to be running 

simultaneously, but which may, in fact, actually be 
running serially
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Concurrency v/s Parallelism

• Parallelism
–  Refers to concurrent tasks that actually run at the 

same time
– Always implies multiple processors
– Parallel tasks always run concurrently, but not all 

concurrent tasks are parallel.
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Recipe to Solve a Problem using 
Parallel Programming

• Typical steps for constructing a parallel algorithm
– identify what pieces of work can be performed concurrently
– partition concurrent work onto independent processors
– distribute a program’s input, output, and intermediate data
– coordinate accesses to shared data: avoid conflicts
– ensure proper order of work using synchronization

• Why “typical”? Some of the steps may be omitted.
– if data is in shared memory, distributing it may be 

unnecessary
– if using message passing, there may not be shared data
– the mapping of work to processors can be done statically by 

the programmer or dynamically by the runtime
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Decomposing Work for Parallel Execution
• Divide work into tasks that can be executed concurrently 
• Many different decompositions possible for any 

computation
• Tasks may be same, different, or even indeterminate sizes
• Tasks may be independent or have non-trivial order 

– Conceptualize tasks and ordering as computation graph
• Node = task
• Edge = control dependency
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Example: Dense Matrix Vector Product

• Computing each element of output vector y is independent 
• Easy to decompose dense matrix-vector product into tasks

– one per element in y
• Observations

– task size is uniform
• no control dependences between tasks

– tasks share b
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Granularity of Task Decomposition
• Granularity = task size
– depends on the number of tasks

• Fine-grain = large number of tasks 
• Coarse-grain = small number of tasks 
• Granularity examples for dense matrix-vector multiply
– fine-grain: each task represents an individual element in y 
– coarser-grain: each task computes 3 elements in y
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Critical Path

• Edge in computation graph represents task 
serialization

• Critical path = longest weighted path though 
graph

• Critical path length = lower bound on parallel 
execution time
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Critical Path Length
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Critical Path Length

Questions:
• What are the tasks on the critical path for each dependency graph?
• What is the shortest parallel execution time for each 

decomposition? 
•  How many processors are needed to achieve the minimum time?
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Limits on Parallel Performance

• What bounds parallel execution time?
– minimum task granularity
• e.g. dense matrix-vector multiplication ≤ n2 concurrent 

tasks
– dependencies between tasks
– parallelization overheads
• e.g., cost of communication between tasks

– fraction of application work that can’t be 
parallelized
• Amdahl’s law
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Amdahl’s Law

• Amdahl’s law
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Gene M. Amdahl

If 50% of your application is parallel and 50% 
is serial, you can’t get more than a factor of 2 
speedup, no matter how many processors it 
runs on.



Amdahl’s Law

16

proecssors

With infinite processors, 
T_Parallel = Tseq + T’par



Measures of parallel performance
• Speedup = Tserial/Tparallel
• Parallel efficiency = Tserial/(pTparallel)

Fig. source: http://www.drdobbs.com/cpp/going-superlinear/206100542
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1. Do disproportionately less work
2. Harness disproportionately more 

resources



Today’s Class
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• Decomposition of sequential program into 
parallel program
– Tasks and decomposition
– Amdahl’s law
– Tasks and mapping
– Decomposition techniques
• Recursive
• Data
• Exploratory
• Speculative



Mapping Tasks to Cores

• Generally
– # of tasks  > # threads available 
– parallel algorithm must map tasks to threads
– schedule independent tasks on separate threads 

(consider computation graph)
– threads should have minimum interaction with 

one another 
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Tasks, Threads, and Mapping Example

• How to best map these tasks on threads?
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Tasks, Threads, and Mapping Example

• No tasks in a level depend upon each other
• Assign all tasks within a level to different threads
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Mapping Techniques

 Static vs. dynamic mappings 
• Static mapping
– a-priori mapping of tasks to threads or processes 

• requirements 

– a good estimate of task size 
– even so, computing an optimal mapping may be hard 

• Dynamic mapping
• map tasks to threads or processes at runtime
• why?

– tasks are generated at runtime, or 
– their sizes are unknown
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Static Mapping

• Data partitioning
• Computation graph partitioning 
• Hybrid strategies 

23



Dynamic Mapping

• Dynamic mapping AKA dynamic load 
balancing
– load balancing is the primary motivation for 

dynamic mapping 

• Styles
– centralized 
– distributed
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Today’s Class
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• Decomposition of sequential program into 
parallel program
– Tasks and decomposition
– Amdahl’s law
– Tasks and mapping
– Decomposition techniques
• Recursive
• Data
• Exploratory
• Speculative



Decomposition Techniques

How should one decompose a task into various subtasks? 

• No single universal recipe
• In practice, a variety of techniques are used 

including
– Data decomposition
– Recursive decomposition  
– Exploratory decomposition 
– Speculative decomposition 
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Data Decomposition

• Steps
1. identify the data on which computations are 

performed 
2. partition the data across various tasks
• partitioning induces a decomposition of the problem 
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Data Decomposition Example
• If each element of the output can be computed 

independently
• Partition the output data across tasks
• Have each task perform the computation for its 

outputs 
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Recursive Decomposition
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The Fibonacci numbers are the sequence á0, 1, 1, 2, 3, 5, 8, 13, 
21, 34, …ñ, where each number is the sum of the previous two.

The sequence is named after Leonardo di Pisa (1170–1250 A.D.), 
also known as Fibonacci, a contraction of filius Bonaccii —“son of 
Bonaccio.”  Fibonacci’s 1202 book Liber Abaci introduced the 
sequence to Western mathematics, although it had previously 
been discovered by Indian mathematicians.

Recurrence:
F0 = 0,
F1 = 1,
Fn = Fn–1 + Fn–2 for n > 1.



Recursive Decomposition of Fibonacci
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uint64_t fib(uint64_t n) { 
  if (n < 2) { 
    return n; 
  } else {
    uint64_t x = fib(n-1);
    uint64_t y = fib(n-2);
    return (x + y);
  }
}

Question: what kind of 
mapping is suited for this 
scenario?

fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)



Exploratory Decomposition

• Exploration (search) of a state space of 
solutions 
– problem decomposition reflects shape of 

execution 
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Exploratory Decomposition

• Parallel formulation may perform a different 
amount of work



Exploratory Decomposition Speedup
• Parallel formulation may perform a different amount of 

work
– Can cause super- or sub-linear speedup 

• Assume each vertex of the triangles represents a 
computation that takes ‘T’ unit of time to compute and 
execution begins from leftmost triangle to the rightmost

3T 3T 3T 3T 3T 3T 3T 3T

• Serial execution time = 7T
• Parallel execution time using 4 

threads to compute each triangle in 
parallel = T

• Speedup (4 threads) = 7T/T = 7
• Super-linear speedup

• Serial execution time = 3T
• Parallel execution time using 4 

threads to compute each triangle in 
parallel = 3T

• Speedup (4 threads) = 3T/3T = 1
• Sub-linear speedup



Question
• How exploratory decomposition (ED) differs 

from data decomposition (DD)?
1. Unlike ED, all partial tasks contribute to final 

result in DD 
2. Unlike DD, unfinished tasks in ED can be 

terminated once final solution is found
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Speculative Decomposition
• Example: when program may take one of many possible 

compute-intensive branches depending on the output of 
preceding computation

 int val = T1   //compute intensive
 switch(val) {   // cases may be computed speculatively
  case 0: T2; break;  
  case 1: T3; break;
  …..
  case n: Tn; break;
 }
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Next Class

• Introduction to dynamic task creation and 
termination

• Quiz-1 during Thursday’s lecture
– Syllabus: Lectures 02, 03, 04
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Reading Materials

• Decomposition techniques
– http://users.atw.hu/parallelcomp/ch03lev1sec2.html

http://users.atw.hu/parallelcomp/ch03lev1sec2.html
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