
Lecture 04: Concurrency
Decomposition

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE502: Foundations of Parallel Programming

Last Class
• Why parallel programming

– Technological push
• Multicore processors

– Application push
• Compute intensive applications operating on large data

• Why multicores?
– Moore’s law and Dennard scaling
– Multicore saves power

• Parallel hardware in the large
– Multicores are also available in modern supercomputers

• FLOPS – theoretical peak performance of a computers for
scientific computing

• Different parallel programming models
– Automatic
– Shared memory
– Distributed memory
– Hybrid shared and distributed memory

Today’s Class

3

• Decomposition of sequential program into
parallel program
– Tasks and decomposition
– Amdahl’s law
– Tasks and mapping
– Decomposition techniques
• Recursive
• Data
• Exploratory
• Speculative

© Vivek Kumar

Concurrency v/s Parallelism
• Concurrency
• “Dealing” with lots of things at once

• Parallelism
• “Doing” lots of things at once

4

Concurrency v/s Parallelism

• Concurrency
– Refers to tasks that appear to be running

simultaneously, but which may, in fact, actually be
running serially

5
© Vivek Kumar

Concurrency v/s Parallelism

• Parallelism
– Refers to concurrent tasks that actually run at the

same time
– Always implies multiple processors
– Parallel tasks always run concurrently, but not all

concurrent tasks are parallel.

6
© Vivek Kumar

Recipe to Solve a Problem using
Parallel Programming

• Typical steps for constructing a parallel algorithm
– identify what pieces of work can be performed concurrently
– partition concurrent work onto independent processors
– distribute a program’s input, output, and intermediate data
– coordinate accesses to shared data: avoid conflicts
– ensure proper order of work using synchronization

• Why “typical”? Some of the steps may be omitted.
– if data is in shared memory, distributing it may be

unnecessary
– if using message passing, there may not be shared data
– the mapping of work to processors can be done statically by

the programmer or dynamically by the runtime

7

Decomposing Work for Parallel Execution
• Divide work into tasks that can be executed concurrently
• Many different decompositions possible for any

computation
• Tasks may be same, different, or even indeterminate sizes
• Tasks may be independent or have non-trivial order

– Conceptualize tasks and ordering as computation graph
• Node = task
• Edge = control dependency

8

Example: Dense Matrix Vector Product

• Computing each element of output vector y is independent
• Easy to decompose dense matrix-vector product into tasks

– one per element in y
• Observations

– task size is uniform
• no control dependences between tasks

– tasks share b
9

Granularity of Task Decomposition
• Granularity = task size
– depends on the number of tasks

• Fine-grain = large number of tasks
• Coarse-grain = small number of tasks
• Granularity examples for dense matrix-vector multiply
– fine-grain: each task represents an individual element in y
– coarser-grain: each task computes 3 elements in y

10

Critical Path

• Edge in computation graph represents task
serialization

• Critical path = longest weighted path though
graph

• Critical path length = lower bound on parallel
execution time

11

Critical Path Length

12

Critical Path Length

Questions:
• What are the tasks on the critical path for each dependency graph?
• What is the shortest parallel execution time for each

decomposition?
• How many processors are needed to achieve the minimum time?

13

Limits on Parallel Performance

• What bounds parallel execution time?
– minimum task granularity
• e.g. dense matrix-vector multiplication ≤ n2 concurrent

tasks
– dependencies between tasks
– parallelization overheads
• e.g., cost of communication between tasks

– fraction of application work that can’t be
parallelized
• Amdahl’s law

14

Amdahl’s Law

• Amdahl’s law

15

Gene M. Amdahl

If 50% of your application is parallel and 50%
is serial, you can’t get more than a factor of 2
speedup, no matter how many processors it
runs on.

Amdahl’s Law

16

proecssors

With infinite processors,
T_Parallel = Tseq + T’par

Measures of parallel performance
• Speedup = Tserial/Tparallel
• Parallel efficiency = Tserial/(pTparallel)

Fig. source: http://www.drdobbs.com/cpp/going-superlinear/206100542
17

1. Do disproportionately less work
2. Harness disproportionately more

resources

Today’s Class

18

• Decomposition of sequential program into
parallel program
– Tasks and decomposition
– Amdahl’s law
– Tasks and mapping
– Decomposition techniques
• Recursive
• Data
• Exploratory
• Speculative

Mapping Tasks to Cores

• Generally
– # of tasks > # threads available
– parallel algorithm must map tasks to threads
– schedule independent tasks on separate threads

(consider computation graph)
– threads should have minimum interaction with

one another

19

Tasks, Threads, and Mapping Example

• How to best map these tasks on threads?

20

Tasks, Threads, and Mapping Example

• No tasks in a level depend upon each other
• Assign all tasks within a level to different threads

21

Mapping Techniques

 Static vs. dynamic mappings
• Static mapping
– a-priori mapping of tasks to threads or processes

• requirements

– a good estimate of task size
– even so, computing an optimal mapping may be hard

• Dynamic mapping
• map tasks to threads or processes at runtime
• why?

– tasks are generated at runtime, or
– their sizes are unknown

22

Static Mapping

• Data partitioning
• Computation graph partitioning
• Hybrid strategies

23

Dynamic Mapping

• Dynamic mapping AKA dynamic load
balancing
– load balancing is the primary motivation for

dynamic mapping

• Styles
– centralized
– distributed

24

Today’s Class

25

• Decomposition of sequential program into
parallel program
– Tasks and decomposition
– Amdahl’s law
– Tasks and mapping
– Decomposition techniques
• Recursive
• Data
• Exploratory
• Speculative

Decomposition Techniques

How should one decompose a task into various subtasks?

• No single universal recipe
• In practice, a variety of techniques are used

including
– Data decomposition
– Recursive decomposition
– Exploratory decomposition
– Speculative decomposition

26

Data Decomposition

• Steps
1. identify the data on which computations are

performed
2. partition the data across various tasks
• partitioning induces a decomposition of the problem

27

Data Decomposition Example
• If each element of the output can be computed

independently
• Partition the output data across tasks
• Have each task perform the computation for its

outputs

28

Recursive Decomposition

29

The Fibonacci numbers are the sequence á0, 1, 1, 2, 3, 5, 8, 13,
21, 34, …ñ, where each number is the sum of the previous two.

The sequence is named after Leonardo di Pisa (1170–1250 A.D.),
also known as Fibonacci, a contraction of filius Bonaccii —“son of
Bonaccio.” Fibonacci’s 1202 book Liber Abaci introduced the
sequence to Western mathematics, although it had previously
been discovered by Indian mathematicians.

Recurrence:
F0 = 0,
F1 = 1,
Fn = Fn–1 + Fn–2 for n > 1.

Recursive Decomposition of Fibonacci

30

uint64_t fib(uint64_t n) {
 if (n < 2) {
 return n;
 } else {
 uint64_t x = fib(n-1);
 uint64_t y = fib(n-2);
 return (x + y);
 }
}

Question: what kind of
mapping is suited for this
scenario?

fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)

Exploratory Decomposition

• Exploration (search) of a state space of
solutions
– problem decomposition reflects shape of

execution

31

Exploratory Decomposition

• Parallel formulation may perform a different
amount of work

Exploratory Decomposition Speedup
• Parallel formulation may perform a different amount of

work
– Can cause super- or sub-linear speedup

• Assume each vertex of the triangles represents a
computation that takes ‘T’ unit of time to compute and
execution begins from leftmost triangle to the rightmost

3T 3T 3T 3T 3T 3T 3T 3T

• Serial execution time = 7T
• Parallel execution time using 4

threads to compute each triangle in
parallel = T

• Speedup (4 threads) = 7T/T = 7
• Super-linear speedup

• Serial execution time = 3T
• Parallel execution time using 4

threads to compute each triangle in
parallel = 3T

• Speedup (4 threads) = 3T/3T = 1
• Sub-linear speedup

Question
• How exploratory decomposition (ED) differs

from data decomposition (DD)?
1. Unlike ED, all partial tasks contribute to final

result in DD
2. Unlike DD, unfinished tasks in ED can be

terminated once final solution is found

34

Speculative Decomposition
• Example: when program may take one of many possible

compute-intensive branches depending on the output of
preceding computation

 int val = T1 //compute intensive
 switch(val) { // cases may be computed speculatively
 case 0: T2; break;
 case 1: T3; break;
 …..
 case n: Tn; break;
 }

35

Next Class

• Introduction to dynamic task creation and
termination

• Quiz-1 during Thursday’s lecture
– Syllabus: Lectures 02, 03, 04

37

Reading Materials

• Decomposition techniques
– http://users.atw.hu/parallelcomp/ch03lev1sec2.html

http://users.atw.hu/parallelcomp/ch03lev1sec2.html

Acknowledgements
• Several of the slides used in this course are borrowed

from the following online course materials:
– Course COMP322, Prof. Vivek Sarkar, Rice University
– Course COMP 422, Prof. John Mellor-Crummey, Rice

University
– Course CSE539S, Prof. I-Ting Angelina Lee, Washington

University in St. Louis
• Contents are also borrowed from following sources:
– “Introduction to Parallel Computing” by Ananth Grama,

Anshul Gupta, George Karypis, and Vipin Kumar. Addison
Wesley, 2003

– https://computing.llnl.gov/tutorials/parallel_comp/
– https://images.google.com/

https://computing.llnl.gov/tutorials/parallel_comp/
https://images.google.com/

