
Lecture 05: Introduction to Dynamic
Task Creation and Termination

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE502: Foundations of Parallel Programming

Today’s Class

3

• Concurrency platforms
• Task creation and termination using async-
finish statements

• Quiz-1

#include <inttypes.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

uint64_t fib(uint64_t n) {
 if (n < 2) {
 return n;
 } else {
 uint64_t x = fib(n-1);
 uint64_t y = fib(n-2);
 return (x + y);
 }
}

typedef struct {
 uint64_t input;
 uint64_t output;
} thread_args;

void *thread_func(void *ptr) {
 uint64_t i =
 ((thread_args *) ptr)->input;
 ((thread_args *) ptr)->output = fib(i);
 return NULL;
}

int main(int argc, char *argv[]) {
 pthread_t thread;
 thread_args args;
 int status;
 uint64_t result;

 if (argc < 2) { return 1; }
 uint64_t n = strtoul(argv[1], NULL, 0);
 if (n < 30) {
 result = fib(n);
 } else {
 args.input = n-1;
 status = pthread_create(&thread,
 NULL,
 thread_func,
 (void*) &args);
 // main can continue executing
 if (status != NULL) { return 1; }
 result = fib(n-2);
 // Wait for the thread to terminate.
 status = pthread_join(thread, NULL);
 if (status != NULL) { return 1; }
 result += args.output;
 }
 printf("Fibonacci of %" PRIu64 " is %" PRIu64 ".\n",
 n, result);
 return 0;
}

Pthread Implementation of Fibonacci

4
Source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec01_intro.pdf

What are the issues
in this program?

Issues with Pthreads

Overhead
The cost of creating a thread >104 cycles ⇒
coarse-grained concurrency. (Thread pools can
help.)

Scalability
Fibonacci code gets at most about 1.5 speedup
for 2 cores. Need a rewrite for more cores.

Modularity The Fibonacci logic is no longer neatly
encapsulated in the fib() function.

Code
Simplicity

Programmers must marshal arguments (shades
of 1958!) and engage in error-prone protocols
in order to load-balance.

Source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec01_intro.pdf
5

Concurrency Platforms
A concurrency platform
should provide:

§ an interface for specifying
the logical parallelism
of the computation;

§ a runtime layer to
automate scheduling
and synchronization; and

§ guarantees of
performance and resource
utilization competitive
with hand-tuned code.

linguistic interface

compiler

runtime

user application

operating system

hardware

tools

Concurrency
Platform

Source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec01_intro.pdf
6

Modern Concurrency Platforms*

1998 2002 2006 2010

1996 2000 2004 2008

OpenMP

Cilk-5, MIT

Java Fork/Join Framework,
Doug Lea

StreamIt, MIT

Fortress, Oracle Labs
PPL, Microsoft

JCilk, MIT
X10, IBM

TPL, Microsoft

Cilk++, CilkArts/Intel
Habanero Java, Rice

Cilk-M, MIT
Cilk Plus, Intel

TBB, Intel

Sequoia++,
Stanford

1994

pH, MIT

NESL, CMU

• The list focuses on platforms that run on systems
 with shared memory.

Habanero C, Rice

CnC, Intel

2012

Habanero-Scala,
Rice,

Java TryCatchWS,
ANU

Source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec01_intro.pdf
7

Today’s Class

8

• Concurrency platforms
• Task creation and termination using async-
finish statements

• Quiz-1

Types of Tasks

• Synchronous
– Blocks until the task execution is complete

• Asynchronous (async)
– Doesn’t blocks for the task to complete its

execution

Async-Finish to your Sunday Tasks

Complete your FPP assignment }

Wash your clothes in washing machine }

Watch movies on laptop }

Talk to father

Talk to mother }

Buy fruits online using your smartphone }

Make your bed }

Post on Facebook that you are done with all your tasks!
10

finish {

async {

async {
}
finish {

}

async {

async {

async {

async {

Async-Finish to your Sunday Tasks

Complete your FPP assignment

Wash your clothes in washing machine

Watch movies on laptop

Talk to father

Talk to mother

Buy fruits online using your smartphone

Make your bed

Post on Facebook that you are done with all your tasks!

11

Async-Finish to your Sunday Tasks

Complete your FPP assignment

Wash your clothes in washing machine

Watch movies on laptop

Talk to father

Talk to mother

Buy fruits online using your smartphone

Make your bed

Post on Facebook that you are done with all your tasks!
12

Applying statement
reordering

Async-Finish to your Sunday Tasks

Complete your FPP assignment }

Wash your clothes in washing machine }

Watch movies on laptop }

Talk to father

Talk to mother }

Buy fruits online using your smartphone }

Make your bed }

Post on Facebook that you are done with all your tasks!
13

finish {

async {

async {
}
finish {

}

async {

async {

async {

async {

Async-Finish to your Sunday Tasks

Complete your FPP assignment }

Wash your clothes in washing machine }

Watch movies on laptop }

Talk to father

Talk to mother }

Buy fruits online using your smartphone }

Make your bed }

Post on Facebook that you are done with all your tasks!
14

finish {

async {

async {
}
finish {

}

async {

async {

async {

async {

Applying statement
reordering

Async and Finish Statements for Task
Creation and Termination (Pseudocode)
async S
• Creates a new child task that

executes statement S

15

finish S
• Execute S but wait until all

async in S’s scope have
terminated

Source:
https://wiki.rice.edu/confluence/download/attachments/4435861/comp322-s16-lec1-
slides.pdf?version=1&modificationDate=1452732285045&api=v2

How to Parallelize Fibonacci using
async and finish Constructs ?

19

fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)

uint64_t fib(uint64_t n) {
 if (n < 2) {
 return n;
 } else {
 uint64_t x = fib(n-1);
 uint64_t y = fib(n-2);
 return (x + y);
 }
}

Source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec01_intro.pdf

Serial Elision

20

uint64_t fib(uint64_t n) {
 if (n < 2) {
 return n;
 } else {
 uint64_t x, y;
 finish {
 async { x = fib(n-1); }
 y = fib(n-2);
 }
 return (x + y);
 }
}

• This is the serial equivalence of the async-finish based
parallel program
– Obtained by removing all async and finish constructs
– High productivity – In most cases, async-finish can be simply

added in any sequential algorithm (without any significant
changes) to get the corresponding parallel version of the
algorithm

uint64_t fib(uint64_t n) {
 if (n < 2) {
 return n;
 } else {
 uint64_t x, y;
 {
 x = fib(n-1);
 y = fib(n-2);
 }
 return (x + y);
 }
}

© Vivek Kumar

Next Class (Saturday)
• Tutorial on Habanero-C (HClib) usage
– Important for upcoming labs

• Ideal parallelism and revisit computation
graph

21
© Vivek Kumar

Acknowledgements
• Several of the slides used in this course are borrowed

from the following online course materials:
– Course COMP322, Prof. Vivek Sarkar, Rice University
– Course COMP 422, Prof. John Mellor-Crummey, Rice

University
– Course CSE539S, Prof. I-Ting Angelina Lee, Washington

University in St. Louis
• Contents are also borrowed from following sources:
– “Introduction to Parallel Computing” by Ananth Grama,

Anshul Gupta, George Karypis, and Vipin Kumar. Addison
Wesley, 2003

– https://computing.llnl.gov/tutorials/parallel_comp/
– https://images.google.com/

https://computing.llnl.gov/tutorials/parallel_comp/
https://images.google.com/

