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Today’s Class
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• Concurrency platforms
• Task creation and termination using async-
finish statements

• Quiz-1



#include <inttypes.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

uint64_t fib(uint64_t n) { 
  if (n < 2) { 
    return n; 
  } else {
    uint64_t x = fib(n-1);
    uint64_t y = fib(n-2);
    return (x + y);
  }
}

typedef struct {
  uint64_t input;
  uint64_t output;
} thread_args;

void *thread_func(void *ptr) {
  uint64_t i = 
    ((thread_args *) ptr)->input;
  ((thread_args *) ptr)->output = fib(i);
  return NULL;
}

int main(int argc, char *argv[]) {
  pthread_t thread;
  thread_args args;
  int status;
  uint64_t result;

  if (argc < 2) { return 1; }
  uint64_t n = strtoul(argv[1], NULL, 0);
  if (n < 30) {
 result = fib(n);
  } else {
    args.input = n-1;
    status = pthread_create(&thread, 
                            NULL, 
                            thread_func, 
                            (void*) &args);
    // main can continue executing
    if (status != NULL) { return 1; }
    result = fib(n-2);
    // Wait for the thread to terminate.
    status = pthread_join(thread, NULL);
    if (status != NULL) { return 1; }
    result += args.output;
  }
  printf("Fibonacci of %" PRIu64 " is %" PRIu64 ".\n",   
         n, result);
  return 0;
}

Pthread Implementation of Fibonacci
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Source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec01_intro.pdf

What are the issues 
in this program?



Issues with Pthreads

Overhead
The cost of creating a thread >104 cycles ⇒ 
coarse-grained concurrency.  (Thread pools can 
help.)

Scalability
Fibonacci code gets at most about 1.5 speedup 
for 2 cores.  Need a rewrite for more cores.  

Modularity The Fibonacci logic is no longer neatly 
encapsulated in the fib() function.

Code
Simplicity

Programmers must marshal arguments (shades 
of 1958! ) and engage in error-prone protocols 
in order to load-balance.

Source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec01_intro.pdf
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Concurrency Platforms
A concurrency platform 
should provide:  

§ an interface for specifying 
the logical parallelism 
of the computation;

§ a runtime layer to
automate scheduling 
and synchronization; and

§ guarantees of 
performance and resource 
utilization competitive 
with hand-tuned code. 

linguistic interface

compiler

runtime

user application

operating system

hardware

tools

Concurrency
Platform

Source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec01_intro.pdf
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Modern Concurrency Platforms*

1998 2002 2006 2010

1996 2000 2004 2008

OpenMP

Cilk-5, MIT

Java Fork/Join Framework, 
Doug Lea

StreamIt, MIT

Fortress, Oracle Labs
PPL, Microsoft

JCilk, MIT
X10, IBM

TPL, Microsoft

Cilk++, CilkArts/Intel
Habanero Java, Rice

Cilk-M, MIT
Cilk Plus, Intel

TBB, Intel

Sequoia++, 
Stanford

1994

pH, MIT

NESL, CMU

• The list focuses on platforms that run on systems
      with shared memory. 

Habanero C, Rice

CnC, Intel

2012

Habanero-Scala, 
Rice,

Java TryCatchWS, 
ANU

Source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec01_intro.pdf
7



Today’s Class
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• Concurrency platforms
• Task creation and termination using async-
finish statements

• Quiz-1



Types of Tasks

• Synchronous 
– Blocks until the task execution is complete

• Asynchronous (async)
– Doesn’t blocks for the task to complete its 

execution



Async-Finish to your Sunday Tasks

Complete your FPP assignment   }

Wash your clothes in washing machine  }

Watch movies on laptop  }

Talk to father

Talk to mother  }

Buy fruits online using your smartphone }

Make your bed  }

Post on Facebook that you are done with all your tasks!
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Applying statement 
reordering
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Async and Finish Statements for Task 
Creation and Termination (Pseudocode)
async S
• Creates a new child task that 

executes statement S
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finish S
• Execute S but wait until all 

async in S’s scope have 
terminated

Source: 
https://wiki.rice.edu/confluence/download/attachments/4435861/comp322-s16-lec1-
slides.pdf?version=1&modificationDate=1452732285045&api=v2



How to Parallelize Fibonacci using 
async and finish Constructs ?
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fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)

uint64_t fib(uint64_t n) { 
  if (n < 2) { 
    return n; 
  } else {
    uint64_t x = fib(n-1);
    uint64_t y = fib(n-2);
    return (x + y);
  }
}

Source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec01_intro.pdf



Serial Elision
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uint64_t fib(uint64_t n) { 
  if (n < 2) { 
    return n; 
  } else {
    uint64_t x, y; 
    finish {
      async { x = fib(n-1); }
    y = fib(n-2);
    }
    return (x + y);
  }
}

• This is the serial equivalence of the async-finish based 
parallel program 
– Obtained by removing all async and finish constructs
– High productivity – In most cases, async-finish can be simply 

added in any sequential algorithm (without any significant 
changes) to get the corresponding parallel version of the 
algorithm

uint64_t fib(uint64_t n) { 
  if (n < 2) { 
    return n; 
  } else {
   uint64_t x, y; 
   {
     x = fib(n-1);
     y = fib(n-2);
   }
   return (x + y);
  }
}

© Vivek Kumar



Next Class (Saturday)
• Tutorial on Habanero-C (HClib) usage
– Important for upcoming labs

• Ideal parallelism and revisit computation 
graph
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