
Lecture 06: Introduction to HClib,
Computation Graphs and Ideal Parallelism

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE502: Foundations of Parallel Programming

Last Class

2

Today’s Class

3

• Introduction to Habanero-C concurrency
platform

• Computation graph
– Ideal parallelism
– Introduction to data races

Installing Habanero-C library (1/3)
• Concurrency platform from Rice University that supports

async-finish based parallel programming model
– Supported on Linux and MacOS
– Short name: HClib
– Result of hard work from several researchers at Rice University

• https://wiki.rice.edu/confluence/display/HABANERO/People
• Prerequisites

– libxml2 and libxml2-devel
– Check if its already installed on your Linux OS

• Default installation location in one my Ubuntu machine
– Headers in: /usr/include/libxml2
– Libraries in: /usr/lib/x86_64-linux-gnu

– gcc >= 4.9.0 (C++11 complaint)
– On Mac OS you may install using brew

• brew install libxml2 (installs everything)
4

© Vivek Kumar

Installing Habanero-C library (2/3)

• Installation (one time thing)
– git clone https://github.com/vivkumar/cse502.git
• This version is copied from the main hclib repository

hosted at https://github.com/habanero-rice/hclib
– cd cse532/hclib
– ./install.sh
– source <absolute path to cse502 dir>/hclib/hclib-

install/bin/hclib_setup_env.sh
– This source is always required once in a new

terminal for both compiling and running programs
that uses hclib

5
© Vivek Kumar

Installing Habanero-C library (3/3)
• Building an app test.cpp that uses hclib

– Fibonacci code can be found in following directory:
• cd cse502/hclib/test/lec05

– Must use the header file hclib_cpp.h
• #include “hclib_cpp.h”

– All hclib programming constructs should be used with “hclib::”
namespace
• E.g., hclib::async, hclib::finish, hclib::launch
• All the above constructs accepts C++11 lambda function

– Several online resources on C++11 lambda function. Go through it on your own

– Makefile is available in test directories for building the applications
– Executing the application

• HCLIB_WORKERS=<number of workers> ./test
– HCLIB_WORKERS sets the total number of Pthread helper threads you want to

create to solve the application in parallel
• Time the result using unix “time” command (or use timing APIs):

– time HCLIB_WORKERS=<number of workers> ./test 6
© Vivek Kumar

Today’s Class

7

• Introduction to Habanero-C concurrency
platform

• Computation graph
– Ideal parallelism
– Introduction to data races

Which Statements can Potentially
Execute in Parallel with Each Other?

8

Computation Graph
finish { // F1

async A;
 finish { // F2

async B1;
async B2;

} // F2
B3;

} // F1

Key idea: If two statements, X and Y,
have no path of directed edges from
one to the other, then they can run in
parallel with each other.

Source:
https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec2-
slides-v1.pdf?version=1&modificationDate=1483206145211&api=v2

Question: Draw Computation Graph
for this Parallel Computation

9

// T1

// T2

// T3

// T4

// T5

// T6

// T7

// T8

// FS

// FE

FS

T1

T2

T6T4
T3

T7

FS

T8

T5

Computation Graphs
• A Computation Graph (CG) captures the dynamic

execution of a parallel program, for a specific input
• CG nodes are “steps” in the program’s execution
– A step is a sequential sub-computation without any async,

begin-finish and end-finish operations
• CG edges represent ordering constraints
– “Continue” edges define sequencing of steps within a task
– “Spawn” edges connect parent tasks to child async tasks
– “Join” edges connect the end of each async task to its IEF’s

end-finish operations
• All computation graphs must be acyclic
– It is not possible for a node to depend on itself

• Computation graphs are examples of “directed acyclic
graphs” (dags)

10
Source:
https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec2-slides-
v1.pdf?version=1&modificationDate=1483206145211&api=v2

Execution Time Analysis for
Computation Graphs

Define
• TIME(N) = execution time of node N
• WORK(G) = sum of TIME(N), for all nodes N in CG G
– WORK(G) is the total work to be performed in G

• CPL(G) = length of a longest path in CG G, when adding
up execution times of all nodes in the path
– Such paths are called critical paths
– CPL(G) is the length of these paths (critical path length,

also referred to as the span of the graph)
– CPL(G) is also the smallest possible execution time for the

computation graph

11
Source:
https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec2-
slides-v1.pdf?version=1&modificationDate=1483206145211&api=v2

Question: What is the Critical Path
Length of this Parallel Computation?

12

// T1

// T2

// T3

// T4

// T5

// T6

// T7

// T8

// FS

// FE

FS

90

60

510
60

20

FS

5

10

Today’s Class

13

• Introduction to Habanero-C concurrency
platform

• Computation graph
– Ideal parallelism
– Introduction to data races

Ideal Parallelism
• Define ideal parallelism of

Computation G Graph as the
ratio, WORK(G)/CPL(G)

• Ideal Parallelism only depends
on the computation graph, and
is the speedup that you can
obtain with an unbounded
number of processors

14

Example:
WORK(G) = 260
CPL(G) = 125
Ideal Parallelism = WORK(G)/CPL(G) = 260/125 ~ 2.08

Source:
https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec2-
slides-v1.pdf?version=1&modificationDate=1483206145211&api=v2

15

Computation Graph 1 Computation Graph 2

Question: Which Computation Graph
has more Ideal Parallelism?

Assume that all nodes have
TIME = 1, so WORK = 10 for
both graphs.

Today’s Class

16

• Introduction to Habanero-C concurrency
platform

• Computation graph
– Ideal parallelism
– Introduction to data races

Data Races
• A data race occurs on location L in a program execution with

computation graph CG if there exist steps (nodes) S1 and S2 in CG
such that:

1. S1 does not depend on S2 and S2 does not depend on S1, i.e., S1
and S2 can potentially execute in parallel, and

2. Both S1 and S2 read or write L, and at least one of the accesses is a
write.

• A data-race is usually considered an error. The result of a read
operation in a data race is undefined. The result of a write
operation is undefined if there are two or more writes to the same
location.
– Note that our definition of data race includes the case that both S1

and S2 write the same value in location L, even if that may not be
considered an error.

• Above definition includes all “potential” data races i.e., we consider
it to be a data race even if S1 and S2 end up executing on the same
processor.

17
Source:
https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec2-
slides-v1.pdf?version=1&modificationDate=1483206145211&api=v2

Question: Locate the Data Race Bug

...
double a[SIZE];
sum1 = sum2 = 0;

 async { for(int i=0; i<SIZE/2; i++) sum1 += a[i]; }
 async { for(int i=SIZE/2; i<SIZE; i++) sum2+=a[i]; }

double sum = sum1 + sum2;

18

Data race bug! Reads and writes can occur in parallel
on sum1 and sum2, in this example!

© Vivek Kumar

ArraySum Example

...
double a[SIZE];
sum1 = sum2 = 0;
finish {
 async { for(int i=0; i<SIZE/2; i++) sum1 += a[i]; }
 async { for(int i=SIZE/2; i<SIZE; i++) sum2+=a[i]; }
}
double sum = sum1 + sum2; // Now gives correct result

19

In this situation, finish was able to
resolve the Data Race..

© Vivek Kumar

How to Parallelize Matrix
Multiplication ?

finish {
for (int i = 0 ; i < N ; i++)

 for (int j = 0 ; j < N ; j++)
async {

 for (int k = 0 ; k < N ; k++)
 async {
 C[i][j] = C[i][j] + A[i][k] * B[k][j];

} // async
} // finish

20
Source:
https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec2-
slides-v1.pdf?version=1&modificationDate=1483206145211&api=v2

Is this a Correct Solution ?

finish {
for (int i = 0 ; i < N ; i++)

 for (int j = 0 ; j < N ; j++)
async {

 for (int k = 0 ; k < N ; k++)
 async {
 C[i][j] = C[i][j] + A[i][k] * B[k][j];

} // async
} // finish

21

Data race bug! Reads and writes can occur in parallel
on the same C[i][j] location, in this example!

© Vivek Kumar

One Possible Solution

finish {
for (int i = 0 ; i < N ; i++)

 for (int j = 0 ; j < N ; j++)
async {

 for (int k = 0 ; k < N ; k++)
 async {
 C[i][j] = C[i][j] + A[i][k] * B[k][j];

} // async
} // finish

22

This program generates N2 parallel async tasks, one to
compute each C[i][j] element of the output array.

In this situation, by
changing the

position of async
we are able to

resolve the data
race..

© Vivek Kumar

What to do in Case of Valid Data Races
that Cannot be Resolved with just

async-finish ?

• We saw in Lecture 04 that we were able to
resolve the data races between Pthreads by using
pthread_mutex_locks/pthread_mutex_unlock

• It is perfectly legal to do this even in case of
async-finish programs, but that’s not
productivity!
– Highly prone to deadlocks and performance loss
– In later lectures we will see a better way that provides

both productivity and performance
23

Next Class
• Greedy scheduling of computation graphs
– Lower bound
– Upper bound

• Thread pools

24

Acknowledgements
• Several of the slides used in this course are borrowed

from the following online course materials:
– Course COMP322, Prof. Vivek Sarkar, Rice University
– Course COMP 422, Prof. John Mellor-Crummey, Rice

University
– Course CSE539S, Prof. I-Ting Angelina Lee, Washington

University in St. Louis
• Contents are also borrowed from following sources:
– “Introduction to Parallel Computing” by Ananth Grama,

Anshul Gupta, George Karypis, and Vipin Kumar. Addison
Wesley, 2003

– https://computing.llnl.gov/tutorials/parallel_comp/
– https://images.google.com/

https://computing.llnl.gov/tutorials/parallel_comp/
https://images.google.com/

