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Last Class

2

• Computation graph
– Ideal parallelism
– Introduction to data races
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Work = 60
CPL = 30
Ideal Parallelism = Work/CPL = 60/30 = 2 

A data race occurs on location L in a program execution with computation graph 
CG if there exist steps (nodes) S1 and S2 in CG such that:

1. S1 does not depend on S2 and S2 does not depend on S1, i.e., S1 and 
S2 can potentially execute in parallel, and

2. Both S1 and S2 read or write L, and at least one of the accesses is a 
write.



Today’s Class
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• Greedy scheduling of computation graph on 
fixed number of processors
– Lower and upper bound on execution time

• Thread pool



Greedy Schedule

•  A greedy schedule is one that never leaves a 
processor idle when one or more nodes are ready 
for execution 

• A node is ready for execution if all its 
predecessors have been executed

•  Observations
– T1 = WORK(G), for all greedy schedules
– T∞ = CPL(G), for all greedy schedules

• where TP = execution time of a schedule for 
computation graph G on P processors

4Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-
s16-lec3-slides-v1.pdf?version=1&modificationDate=1483206145596&api=v2



Scheduling of a Computation Graph on 
a fixed number of processors: Example
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A();        // 1 units
finish {
    async {
        B();           // 1 units
        D();           // 1 units
    }
    async {
        C();           // 1 units
        E();           // 1 units 
    }
    async F();    // 10 units
}
G();             // 1 units

• Spawn edge
• Continue edge
• Join edge
• Node label = time(N), for all nodes N in the graph
• CPL (Graph) = 12
• Work (Graph) = 16
• Ideal Parallelism = 16/12 = 1.33



Lower Bounds on Execution Time of 
Greedy Schedules
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Start 
Time

Proc1 Proc2

0 A

1 B F

2 D F

3 C F

4 E F

5 F

6 F

7 F

8 F

9 F

10 F

11 G

12 Completion 
time = 12

• Best possible execution 
time of this computation 
graph on two processors
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Lower Bounds on Execution Time of 
Greedy Schedules

• Let TP = execution time of a schedule for 
computation graph G on P processors
– Can be different for different schedules

• Lower bounds for all greedy schedules
– Capacity bound: TP  ≥ WORK(G)/P
– Critical path bound: TP  ≥ CPL(G)

• Putting them together
– TP  ≥ max(WORK(G)/P, CPL(G))

7Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-
s16-lec3-slides-v1.pdf?version=1&modificationDate=1483206145596&api=v2



Upper Bound on Execution Time of 
Greedy Schedules 
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Start Time Proc1 Proc2

0 A

1 B C
2 D E
3 F

4 F

5 F

6 F

7 F

8 F

9 F

10 F

11 F

12 F

13 G

14 Time = 14

• Worst possible execution 
time of this computation 
graph on two processors
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Upper Bound on Execution Time of 
Greedy Schedules 

• Define a time step to be 
complete if ≥ P nodes are ready 
at that time, or incomplete 
otherwise
– #StepsComplete ≤ WORK(G)/P
– #StepsIncomplete ≤ CPL(G)
– TP = #StepsComplete + #StepsIncomplete

– TP ≤ WORK(G)/P + CPL(G)
• Theorem [Graham’68, Brent’74]

9Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-
s16-lec3-slides-v1.pdf?version=1&modificationDate=1483206145596&api=v2
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Today’s Class
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• Greedy scheduling of computation graph on 
fixed number of processors
– Lower and upper bound on execution time

• Thread pool



Concurrency Platforms (Recap Lec04)

A concurrency platform 
should provide:  

§ an interface for specifying 
the logical parallelism 
of the computation;

§ a runtime layer to
automate scheduling 
and synchronization; and

§ guarantees of 
performance and resource 
utilization competitive 
with hand-tuned code. 

linguistic interface

compiler

runtime

user application

operating system

hardware

tools

Concurrency
Platform

Source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec01_intro.pdf
11



Thread Pool in Concurrency Platforms
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async 

finish 

finish 

async 

async 

async 

async 

finish async 

finish 

Pool of 
Pthreads

In this course we are only going to consider the case where a thread pool has 
total number of threads (Pthreads) equal to total number of available cores

© Vivek Kumar



Thread Pool in Concurrency Platforms

• A Key component in any concurrency platform 
that relieves the user from the complexity of 
mapping tasks to threads (e.g., Pthreads) to 
achieve maximum performance on a given 
number of processors (or cores)
– Sneak peek: thread pools does not restricts to 

shared-memory platform (multicore processor), 
but can also be extended to distributed memory 
platform (supercomputer)

13
© Vivek Kumar



Mapping the Linguistic Interface to 
Thread Pool Runtime

• Compiler based runtimes
– Cilk, X10, TryCatchWS
– User code translated to runtime code and then compiled using a 

native compiler (e.g., gcc)
– Compiler maintenance is a costly affair and it is not so easy to use 

new features from mainstream languages
– Using standard debugger (e.g., gdb) is not possible as the line 

number information inside the symbol table is w.r.t. the compiler 
generated code and not w.r.t. the user written code

– However, compiler based approach provide several opportunities for 
code optimizations and doing smart things

• Library based runtimes
– Java fork/join framework, HClib, HJlib
– Removes all the drawbacks of a compiler based approach 

14

Our focus

© Vivek Kumar



Mapping the Linguistic Interface to 
Library Based Thread Pool Runtime
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#include <runtime-API.h>
main() {
  init_runtime();
  finish {
    async (S1);
    S2;
  }
  finalize_runtime();
}

Initialize 
runtime and 
associated 

data-structures

Runtime APIs

Release runtime 
resources

© Vivek Kumar



Mapping the Linguistic Interface to 
Library Based Thread Pool Runtime
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#include <runtime-API.h>
main() {
  init_runtime();
  start_finish();
    async (S1);
    S2;
  end_finish();
  finalize_runtime();
}

Initialize 
runtime and 
associated 
resources

Runtime APIs

Release runtime 
resources

Runtime 
equivalent 

of starting a 
finish scope

Runtime 
equivalent 
of closing a 
finish scope

© Vivek Kumar



Mapping the Linguistic Interface to 
Library Based Thread Pool Runtime
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#include <runtime-API.h>
main() {
  init_runtime();
  start_finish();
    async (S1);
    S2;
  end_finish();
  finalize_runtime();
}

volatile boolean shutdown = false;
void init_runtime() {
  int size = thread_pool_size();
  for(int i=1; i<size; i++) {
    pthread_create(worker_routine);
  }
}

void worker_routine() {
  while( !shutdown ) {
     find_and_execute_task();
  }
}

Note: here the workers are continuously spinning, but in some 
implementation they might sleep if no tasks are available

© Vivek Kumar



Mapping the Linguistic Interface to 
Library Based Thread Pool Runtime
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#include <runtime-API.h>
main() {
  init_runtime();
  start_finish();
    async (S1);
    S2;
  end_finish();
  finalize_runtime();
}

volatile int finish_counter = 0;
void start_finish() {
  finish_counter = 0; //reset
}

Note: in case of nested finish (e.g., 
Fibonacci), we need a better way to 
manage finish scopes. Recall, in Fibonacci 
every fib(n) call created a new finish, 
which ultimately creates a tree of finishes

© Vivek Kumar



Mapping the Linguistic Interface to 
Library Based Thread Pool Runtime
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#include <runtime-API.h>
main() {
  init_runtime();
  start_finish();
    async (S1);
    S2;
  end_finish();
  finalize_runtime();
}

void async(task) {
  lock_finish();
  finish_counter++;//concurrent access
  unlock_finish();
  // copy task on heap
  void* p = malloc(task_size);
  memcpy(p, task, task_size);
  //thread-safe push_task_to_runtime
  push_task_to_runtime(&p); 
  return;
}

Note: there are better ways to 
increment finish counter rather 
than doing it inside locks

Note: Runtime stores pointer to 
the tasks passed in the async. To 
ensure valid pointer during task 
execution, we heap allocate the 
task and store pointer to the task 
on heap.

© Vivek Kumar



Mapping the Linguistic Interface to 
Library Based Thread Pool Runtime
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#include <runtime-API.h>
main() {
  init_runtime();
  start_finish();
    async (S1);
    S2;
  end_finish();
  finalize_runtime();
}

void end_finish() {
  while(finish_counter != 0) {
    find_and_execute_task();
  }
}

void find_and_execute_task() {
   //grab_from_runtime is thread-safe
   task = grab_task_from_runtime(); 
   if(task != NULL) {
      execute_task(task);
      free(task);
      lock_finish();
      finish_counter--;
      unlock_finish();
   }
}

Note: there are better ways to 
decrement finish counter rather 
than doing it inside locks

© Vivek Kumar



Mapping the Linguistic Interface to 
Library Based Thread Pool Runtime
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#include <runtime-API.h>
main() {
  init_runtime();
  start_finish();
    async (S1);
    S2;
  end_finish();
  finalize_runtime();
}

void finalize_runtime() {
   //all spinning workers 
   //will exit worker_routine
   shutdown = true;
   int size = thread_pool_size(); 
   // master waits for helpers to join
   for(int i=1; i<size; i++) {
     pthread_join(thread[i]);
   }
}

© Vivek Kumar



How to Store Tasks in Runtime ?

• push_task_to_runtime()
• grab_task_from_runtime()

Data-structures for storing tasks in a thread pool 
based runtime plays a very important role in 

determining the scalability and performance of 
the runtime

22
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Next Lecture
• Work-sharing and work-stealing task scheduling
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