
Lecture 07: Greedy Scheduling of
Computation Graph on a Fixed Number of

Processors

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE502: Foundations of Parallel Programming

Last Class

2

• Computation graph
– Ideal parallelism
– Introduction to data races

20

10

20

10

Work = 60
CPL = 30
Ideal Parallelism = Work/CPL = 60/30 = 2

A data race occurs on location L in a program execution with computation graph
CG if there exist steps (nodes) S1 and S2 in CG such that:

1. S1 does not depend on S2 and S2 does not depend on S1, i.e., S1 and
S2 can potentially execute in parallel, and

2. Both S1 and S2 read or write L, and at least one of the accesses is a
write.

Today’s Class

3

• Greedy scheduling of computation graph on
fixed number of processors
– Lower and upper bound on execution time

• Thread pool

Greedy Schedule

• A greedy schedule is one that never leaves a
processor idle when one or more nodes are ready
for execution

• A node is ready for execution if all its
predecessors have been executed

• Observations
– T1 = WORK(G), for all greedy schedules
– T∞ = CPL(G), for all greedy schedules

• where TP = execution time of a schedule for
computation graph G on P processors

4Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-
s16-lec3-slides-v1.pdf?version=1&modificationDate=1483206145596&api=v2

Scheduling of a Computation Graph on
a fixed number of processors: Example

5

1A

1B 1 C

1 E1D 10 F

1G

A(); // 1 units
finish {
 async {
 B(); // 1 units
 D(); // 1 units
 }
 async {
 C(); // 1 units
 E(); // 1 units
 }
 async F(); // 10 units
}
G(); // 1 units

• Spawn edge
• Continue edge
• Join edge
• Node label = time(N), for all nodes N in the graph
• CPL (Graph) = 12
• Work (Graph) = 16
• Ideal Parallelism = 16/12 = 1.33

Lower Bounds on Execution Time of
Greedy Schedules

6

Start
Time

Proc1 Proc2

0 A

1 B F

2 D F

3 C F

4 E F

5 F

6 F

7 F

8 F

9 F

10 F

11 G

12 Completion
time = 12

• Best possible execution
time of this computation
graph on two processors

1

1 1

1011

1

A

B C

ED F

G

Lower Bounds on Execution Time of
Greedy Schedules

• Let TP = execution time of a schedule for
computation graph G on P processors
– Can be different for different schedules

• Lower bounds for all greedy schedules
– Capacity bound: TP ≥ WORK(G)/P
– Critical path bound: TP ≥ CPL(G)

• Putting them together
– TP ≥ max(WORK(G)/P, CPL(G))

7Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-
s16-lec3-slides-v1.pdf?version=1&modificationDate=1483206145596&api=v2

Upper Bound on Execution Time of
Greedy Schedules

8

Start Time Proc1 Proc2

0 A

1 B C
2 D E
3 F

4 F

5 F

6 F

7 F

8 F

9 F

10 F

11 F

12 F

13 G

14 Time = 14

• Worst possible execution
time of this computation
graph on two processors

1

1 1

1011

1

A

B C

ED F

G

Upper Bound on Execution Time of
Greedy Schedules

• Define a time step to be
complete if ≥ P nodes are ready
at that time, or incomplete
otherwise
– #StepsComplete ≤ WORK(G)/P
– #StepsIncomplete ≤ CPL(G)
– TP = #StepsComplete + #StepsIncomplete

– TP ≤ WORK(G)/P + CPL(G)
• Theorem [Graham’68, Brent’74]

9Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-
s16-lec3-slides-v1.pdf?version=1&modificationDate=1483206145596&api=v2

Start Time Proc1 Proc2

0 A

1 B C
2 D E
3 F

4 F

5 F

6 F

7 F

8 F

9 F

10 F

11 F

12 F

13 G

14 Time = 14

Today’s Class

10

• Greedy scheduling of computation graph on
fixed number of processors
– Lower and upper bound on execution time

• Thread pool

Concurrency Platforms (Recap Lec04)

A concurrency platform
should provide:

§ an interface for specifying
the logical parallelism
of the computation;

§ a runtime layer to
automate scheduling
and synchronization; and

§ guarantees of
performance and resource
utilization competitive
with hand-tuned code.

linguistic interface

compiler

runtime

user application

operating system

hardware

tools

Concurrency
Platform

Source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec01_intro.pdf
11

Thread Pool in Concurrency Platforms

12

async

finish

finish

async

async

async

async

finish async

finish

Pool of
Pthreads

In this course we are only going to consider the case where a thread pool has
total number of threads (Pthreads) equal to total number of available cores

© Vivek Kumar

Thread Pool in Concurrency Platforms

• A Key component in any concurrency platform
that relieves the user from the complexity of
mapping tasks to threads (e.g., Pthreads) to
achieve maximum performance on a given
number of processors (or cores)
– Sneak peek: thread pools does not restricts to

shared-memory platform (multicore processor),
but can also be extended to distributed memory
platform (supercomputer)

13
© Vivek Kumar

Mapping the Linguistic Interface to
Thread Pool Runtime

• Compiler based runtimes
– Cilk, X10, TryCatchWS
– User code translated to runtime code and then compiled using a

native compiler (e.g., gcc)
– Compiler maintenance is a costly affair and it is not so easy to use

new features from mainstream languages
– Using standard debugger (e.g., gdb) is not possible as the line

number information inside the symbol table is w.r.t. the compiler
generated code and not w.r.t. the user written code

– However, compiler based approach provide several opportunities for
code optimizations and doing smart things

• Library based runtimes
– Java fork/join framework, HClib, HJlib
– Removes all the drawbacks of a compiler based approach

14

Our focus

© Vivek Kumar

Mapping the Linguistic Interface to
Library Based Thread Pool Runtime

15

#include <runtime-API.h>
main() {
 init_runtime();
 finish {
 async (S1);
 S2;
 }
 finalize_runtime();
}

Initialize
runtime and
associated

data-structures

Runtime APIs

Release runtime
resources

© Vivek Kumar

Mapping the Linguistic Interface to
Library Based Thread Pool Runtime

16

#include <runtime-API.h>
main() {
 init_runtime();
 start_finish();
 async (S1);
 S2;
 end_finish();
 finalize_runtime();
}

Initialize
runtime and
associated
resources

Runtime APIs

Release runtime
resources

Runtime
equivalent

of starting a
finish scope

Runtime
equivalent
of closing a
finish scope

© Vivek Kumar

Mapping the Linguistic Interface to
Library Based Thread Pool Runtime

17

#include <runtime-API.h>
main() {
 init_runtime();
 start_finish();
 async (S1);
 S2;
 end_finish();
 finalize_runtime();
}

volatile boolean shutdown = false;
void init_runtime() {
 int size = thread_pool_size();
 for(int i=1; i<size; i++) {
 pthread_create(worker_routine);
 }
}

void worker_routine() {
 while(!shutdown) {
 find_and_execute_task();
 }
}

Note: here the workers are continuously spinning, but in some
implementation they might sleep if no tasks are available

© Vivek Kumar

Mapping the Linguistic Interface to
Library Based Thread Pool Runtime

18

#include <runtime-API.h>
main() {
 init_runtime();
 start_finish();
 async (S1);
 S2;
 end_finish();
 finalize_runtime();
}

volatile int finish_counter = 0;
void start_finish() {
 finish_counter = 0; //reset
}

Note: in case of nested finish (e.g.,
Fibonacci), we need a better way to
manage finish scopes. Recall, in Fibonacci
every fib(n) call created a new finish,
which ultimately creates a tree of finishes

© Vivek Kumar

Mapping the Linguistic Interface to
Library Based Thread Pool Runtime

19

#include <runtime-API.h>
main() {
 init_runtime();
 start_finish();
 async (S1);
 S2;
 end_finish();
 finalize_runtime();
}

void async(task) {
 lock_finish();
 finish_counter++;//concurrent access
 unlock_finish();
 // copy task on heap
 void* p = malloc(task_size);
 memcpy(p, task, task_size);
 //thread-safe push_task_to_runtime
 push_task_to_runtime(&p);
 return;
}

Note: there are better ways to
increment finish counter rather
than doing it inside locks

Note: Runtime stores pointer to
the tasks passed in the async. To
ensure valid pointer during task
execution, we heap allocate the
task and store pointer to the task
on heap.

© Vivek Kumar

Mapping the Linguistic Interface to
Library Based Thread Pool Runtime

20

#include <runtime-API.h>
main() {
 init_runtime();
 start_finish();
 async (S1);
 S2;
 end_finish();
 finalize_runtime();
}

void end_finish() {
 while(finish_counter != 0) {
 find_and_execute_task();
 }
}

void find_and_execute_task() {
 //grab_from_runtime is thread-safe
 task = grab_task_from_runtime();
 if(task != NULL) {
 execute_task(task);
 free(task);
 lock_finish();
 finish_counter--;
 unlock_finish();
 }
}

Note: there are better ways to
decrement finish counter rather
than doing it inside locks

© Vivek Kumar

Mapping the Linguistic Interface to
Library Based Thread Pool Runtime

21

#include <runtime-API.h>
main() {
 init_runtime();
 start_finish();
 async (S1);
 S2;
 end_finish();
 finalize_runtime();
}

void finalize_runtime() {
 //all spinning workers
 //will exit worker_routine
 shutdown = true;
 int size = thread_pool_size();
 // master waits for helpers to join
 for(int i=1; i<size; i++) {
 pthread_join(thread[i]);
 }
}

© Vivek Kumar

How to Store Tasks in Runtime ?

• push_task_to_runtime()
• grab_task_from_runtime()

Data-structures for storing tasks in a thread pool
based runtime plays a very important role in

determining the scalability and performance of
the runtime

22
© Vivek Kumar

Next Lecture
• Work-sharing and work-stealing task scheduling

23
© Vivek Kumar

