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Last Lecture:
Library Based
Thread Pool

volatile boolean shutdown =
void init runtime() {
int size = thread_pool size();
for(int i=1; i<size; i++) {
pthread create(worker routine);

false;

}

; 7

Runtime

#include <runtime-API.h>
main() A

init_runtime();

start_finish();
async (S1); =————>
S2;

end_finish();

finalize runtime();

! 4

v

volatile int finish_ counter = 0;
void start_finish() {
finish_counter = 0; //reset

}

void async(task) {
lock_finish();
finish_counter++;//concurrent access
unlock_finish();

void worker routine() {
while( !shutdown ) {

find_and_execute_task();
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void find_and_execute_task() {
//pop_from runti read-safe
task op_task_from_runtime(
if(task !'="NOTC)—
execute_task(task);
free(task);
lock _finish();
finish_counter--;
unlock _finish();

// copy task on heap

void* p = malloc(task _size);
memcpy(p, task, task size);
//thread-safe push_task_to_runtime
push_task to_runtime(&p);

return;

[
[

void finalize runtime() {

> //all spinning workers

void end finish() {
while(finish_counter != 0) {
find _and_execute_ task();
}
}

//will exit worker_routine

shutdown = true;

int size = thread pool size();

// master waits for helpers to join

for(int i=1; i<size; i++) {
pthread_join(thread[i]);

}




Today’s Class

=> Lab-1 solution

* Task scheduling paradigms

— Work-sharing scheduling
— Work-stealing scheduling
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How to Push/Pull Tasks in Runtime ?

° pUSh_taSk_tO_ru ntImE() We saw the use of these
two runtime APlIs in
e pop_task from_runtime() Lecture 07

Data-structures for storing tasks in a thread pool
based runtime plays a very important role in
determining the scalability and performance of
the runtime

© Vivek Kumar



How to Push/Pull Tasks in Runtime ?

* push_task to runtime()
e pop_task from_runtime()

 Two widely used task scheduling techniques
— Work-sharing
* OpenMP parallel for loops

— Work-stealing

* OpenMP tasking pragmas, Cilk, X10, HClib, Habanero-
Java
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Today’s Class

e Lab-1 solution

=>+ Task scheduling paradigms
— Work-sharing scheduling
— Work-stealing scheduling
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Work—-Sharing

Shelf of Files

volatile boolean shutdown = false;
void init_runtime() {
int size = thread pool size();
for(int i=1; i<size; i++) {
pthread create(worker routine);

}
; 4
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Work—-Sharing

Shelf of Files

#include <runtime-API.h>

main() {
init_runtime();
start_finish();
async (S1);
S2;
end finish();

void worker routine() {
while( !shutdown ) {
find _and_execute task();
}
}

4

flnallze _runtime();

NO WORK NO WORK NO WORK
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Work—-Sharing

Shelf of Files void async(task) {

lock _finish();
finish_counter++;//concurrent access
unlock finish();

// copy task on heap

void* p = malloc(task _size);
memcpy(p, task, task size);
//thread-safe push_task to runtime

Wow | created new file! USRI 30 RUME T8
return;
push_file to shelf() 7

}
NO WORK o ﬁ NO WORK ﬁ NO WORK
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Work—-Sharing

Shelf of Files

void find_and_ execute task() {
//pop_from runtime read-safe
task =Cpop_task_from_runtime(
if(task !="NOU
execute_task(task);
free(task);
lock_finish();

Wow | created new file! A

unlock Flnlsh()

ush_file_to_shelf()
< 7
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Sorry, only
one at a time

Work—-Sharing

Shelf of Files

Wow | created new file!
push_file to shelf()

Wow | created new file!
push_file to shelf()
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Sorry, only
one at a time

Sorry, only
one at a time

Work—-Sharing

Shelf of Files

pop_file_from_shelf()

Wow | created new file! op_file_from_shelf{()

push_file to shelf()

|

Wow | created new file!
push_file to shelf()
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Today’s Class

* Task scheduling paradigms

— Work-sharing scheduling
f>— Work-stealing scheduling
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Wo rk—Stea lin

Shelf of Files
Shelf of Files
Shelf of Files
Shelf of Files

Tail Tail Tail Tail
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. Sorry, onIy
Sorry, only
s~ \Nork—Stealing ,
one at a time
&) -~ &
N PN, Store
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. Sorry, only
Sorry, only
s~ \NOrk—Stealing , rntime .’ st atime
one at a time
r.'q ] e q! ‘l
2 Store
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Wow | created new file!
push_file_to_shelf(1)
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. Sorry, only
Sorry, only
s~ \NOrk—Stealing , rntime .’ st atime
one at a time
r.'q ] e q! ‘l
2 Store
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Oops! Lets try Wow | created new file!
again from a

push_file_to_shelf(1)
random shelf
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‘ SHeIf oleiIes
Shelf of Files

bush_file to shelf(0)
pop_file_from_shelf(0)

Tail

Wow | created new file!
push_file_to_shelf(1)
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Wo rk—Stea lin
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~Shelf of Files
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Task Scheduling Analogy With an Office

Office
File d (‘ Office Clerk

Task <

Lock (usually implemented through compare-and-
swap atomic operations, e.g., gcc built-in atomics) Worker Thread (e'g" Pthread)

Shelf of Files in Work-stealing

Per worker LIFO queue
(“deque”), where the victim
push and pop tasks from the tail
and thief steals task from the
head. Pop and steal are
serialized on a deque only in
case there is one task remaining

26

Shelf of Files in Work-sharing
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Global FIFO queue
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Work-Sharing v/s Work-Stealing

. Sorry, onl
Sorry, only Work-Sharing onenta
time Store
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Shelf of
Files

 Work-sharing
— Busy worker re-distributes the task eagerly

— Easy implementation through global task T
pOOI ZVP:_Ifi(l:eri?(ie_(:;;\fA(l)ﬁl Wow | created new pop_file_from_shel
push_file_to_shelf()
Access to the global pool needs to be - /
synchronized: scalability bottleneck ki —R AR PN il -
Office Office Office Office
Clerk_0 Clerk_1 Clerk_2 Clerk_3

* Work-stealing

— Busy worker pays little overhead to enable
stealing

e Alockis required for pop and steal only in case
single task remaining on deque (only feasible by
using atomic operations)

* |dle worker steals the tasks from busy workers « i ron s

pop_file_from_shelf(0)/|

Shelf of
Files

— Distributed task pools ”
— Better scalability ({Q
* NUMA? v o
Office Office Office Office
Clerk_0 Clerk_1 Clerk_2 E?rk_a
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Next Class

* Types of work-stealing
* Memoization

* Quiz-2 during next lecture (Tuesday)
— Syllabus: Lectures 05-08
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Reading Materials

* A Java Fork/Join framework, Doug Lea, ACM,
2000

— http://gee.cs.oswego.edu/dl/papers/fj.pdf
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