CSE502: Foundations of Parallel Programming

Lecture 08: Task Scheduling
Paradigms

Vivek Kumar
Computer Science and Engineering
IIT Delhi
vivekk@iiitd.ac.in

Last Lecture:
Library Based
Thread Pool

volatile boolean shutdown =
void init runtime() {
int size = thread_pool size();
for(int i=1; i<size; i++) {
pthread create(worker routine);

false;

}

; 7

Runtime

#include <runtime-API.h>
main() A

init_runtime();

start_finish();
async (S1); =————>
S2;

end_finish();

finalize runtime();

! 4

v

volatile int finish_ counter = 0;
void start_finish() {
finish_counter = 0; //reset

}

void async(task) {
lock_finish();
finish_counter++;//concurrent access
unlock_finish();

void worker routine() {
while(!shutdown) {

find_and_execute_task();

7

4

void find_and_execute_task() {
//pop_from runti read-safe
task op_task_from_runtime(
if(task !'="NOTC)—
execute_task(task);
free(task);
lock _finish();
finish_counter--;
unlock _finish();

// copy task on heap

void* p = malloc(task _size);
memcpy(p, task, task size);
//thread-safe push_task_to_runtime
push_task to_runtime(&p);

return;

[
[

void finalize runtime() {

> //all spinning workers

void end finish() {
while(finish_counter != 0) {
find _and_execute_ task();
}
}

//will exit worker_routine

shutdown = true;

int size = thread pool size();

// master waits for helpers to join

for(int i=1; i<size; i++) {
pthread_join(thread[i]);

}

Today’s Class

=> Lab-1 solution

* Task scheduling paradigms

— Work-sharing scheduling
— Work-stealing scheduling

© Vivek Kumar

How to Push/Pull Tasks in Runtime ?

° pUSh_taSk_tO_ru ntImE() We saw the use of these
two runtime APlIs in
e pop_task from_runtime() Lecture 07

Data-structures for storing tasks in a thread pool
based runtime plays a very important role in
determining the scalability and performance of
the runtime

© Vivek Kumar

How to Push/Pull Tasks in Runtime ?

* push_task to runtime()
e pop_task from_runtime()

 Two widely used task scheduling techniques
— Work-sharing
* OpenMP parallel for loops

— Work-stealing

* OpenMP tasking pragmas, Cilk, X10, HClib, Habanero-
Java

© Vivek Kumar

Today’s Class

e Lab-1 solution

=>+ Task scheduling paradigms
— Work-sharing scheduling
— Work-stealing scheduling

© Vivek Kumar

Work—-Sharing

Shelf of Files

volatile boolean shutdown = false;
void init_runtime() {
int size = thread pool size();
for(int i=1; i<size; i++) {
pthread create(worker routine);

}
; 4

P T VO O

O#»G)CIerk 0 Oﬂ'ifeJCIerk 1© Vivek Kumar O#»?EJ lerk™ 2 OFM‘!JCIerk 3

Work—-Sharing

Shelf of Files

#include <runtime-API.h>

main() {
init_runtime();
start_finish();
async (S1);
S2;
end finish();

void worker routine() {
while(!shutdown) {
find _and_execute task();
}
}

4

flnallze _runtime();

NO WORK NO WORK NO WORK
d ll[d

o#@”aerk 0

Ofﬁce Clerk 1o vivek kumar O*Fﬁi%/CIerk 2

Ofﬁc?)CIerk 3

8

Work—-Sharing

Shelf of Files void async(task) {

lock _finish();
finish_counter++;//concurrent access
unlock finish();

// copy task on heap

void* p = malloc(task _size);
memcpy(p, task, task size);
//thread-safe push_task to runtime

Wow | created new file! USRI 30 RUME T8
return;
push_file to shelf() 7

}
NO WORK o ﬁ NO WORK ﬁ NO WORK
¢ £ ¢ o— (¢ ¢ ¢ X

\ \

] |) |
Office Clerk 0 OFfige ClIEFR 1o vivek kumar OFFiEE ClaFk™2 Office Clerk 3

Work—-Sharing

Shelf of Files

void find_and_ execute task() {
//pop_from runtime read-safe
task =Cpop_task_from_runtime(
if(task !="NOU
execute_task(task);
free(task);
lock_finish();

Wow | created new file! A

unlock Flnlsh()

ush_file_to_shelf()
< 7

| ANOWORK ﬁ NO WORK
I« +E= (d (‘F d

10

pop_file_from_shelf(

Office Clerk 0 Office CIEPK 1o vivek kumar OFFIEE" CIerk 2 Office (Clerk 3

Sorry, only
one at a time

Work—-Sharing

Shelf of Files

Wow | created new file!
push_file to shelf()

Wow | created new file!
push_file to shelf()

\
ﬁ NO WORK NO WORK
d (= (4 ¢ a ¢

\ \
l

J) - 7) B) -
Office Clerk 0 OFfige CIBFK 1o vivek kumar OFFIEE ClETk™ 2 Office Clerk 3

Sorry, only
one at a time

Sorry, only
one at a time

Work—-Sharing

Shelf of Files

pop_file_from_shelf()

Wow | created new file! op_file_from_shelf{()

push_file to shelf()

|

Wow | created new file!
push_file to shelf()

Office Clerk 0 OFFiEe CIETK 1o vivek kumar OFFiEE CleFk2 Office Clerk 3

Today’s Class

* Task scheduling paradigms

— Work-sharing scheduling
f>— Work-stealing scheduling

© Vivek Kumar

13

wn w wn
o Q A
L [L
Y4— Y4— y—
o o (@)
= = o=
()] ()] ()]
- - <
(Va) (Va) (Vg

Tail Tail Tail Tail

|)))
Office Clerk 0 Office CIeFK 1o vivek kumar OFFicE Clerk™2 Office Clerk 3

Shelf of Files

14

\-if\i"

Wo rk—Stea lin

Shelf of Files
Shelf of Files
Shelf of Files
Shelf of Files

Tail Tail Tail Tail

({Q NO WORK (& NO WORK ﬁ NO WORK
d ¢ d eE— (4 ¢ d ¢

Office Clerk 0 OFfige CIBFK 1o vivek kumar OFFIEE ClETk™ 2 Office Clerk 3

. Sorry, onIy
Sorry, only
s~ \Nork—Stealing ,
one at a time
&) -~ &
N PN, Store

Store w NG &

Keeper @a' Keeper |Check-ODT
Head
(%) (0] (7)) (%)
Q Q Q Q
L [[L
© © 5 E
K3 Ko K9] K]
< - N e <
(Vp] (Vp] w (Vg
Tail Tail Tail
Wow | created new file!
push_file_to_shelf(1)
NO WORK NO WORK NO WORK

d ¢ d (= d ¢ d ¢

|) @))
Office Clerk 0 OFfige CIBFK 1o vivek kumar OFFIEE ClETk™ 2 Office Clerk 3

. Sorry, only
Sorry, only
s~ \NOrk—Stealing , rntime .’ st atime
one at a time
r.'q] e q! ‘l
2 Store

v. W
@0
iy

Shelf of Files
Shelf of Files
Shelf of Files
Shelf of Files

Tail Tail

Wow | created new file!
push_file_to_shelf(1)

/& NO WORK NO WORK
d e (4 ¢ d ¢

17

Office Clerk 0 OFfige CI8TK 1o vivek kumar OFFiEE CleTk™2 Office Clerk 3

Wo rk—Stea lin

LS
hn!“"—'- D
N

(V)] (7)) (7))
Q L Q
L L L
5 S S
O o O
- e -
(Vs (s (Vg
Tail Tail Tail
fVow | created new file!
' 2
pop_file_from_shelf| push_file to shelf(1)
NO WORK NO WORK NO WORK

d ¢ d e (4 ¢ d ¢

Office Clerk 0 OFFiEe CIETK 1o vivek kumar OFFiEE CleFk2 Office Clerk 3

. Sorry, only
Sorry, only
s~ \NOrk—Stealing , rntime .’ st atime
one at a time
r.'q] e q! ‘l
2 Store

v. W
@0
iy

Shelf of Files
Shelf of Files
Shelf of Files
Shelf of Files

Tail Tail

Oops! Lets try Wow | created new file!
again from a

push_file_to_shelf(1)
random shelf

(’!Q NO WORK /& NO WORK NO WORK
¢ ¢ d tfE— (4 ¢ d ¢

19

Office Clerk 0 OFfige CI8TK 1o vivek kumar OFFiEE CleTk™2 Office Clerk 3

. Sorry, onIy
Sorry, only
s~ \Nork—Stealing Coonrin,
one at a time
».,q] e q}' Q.
R 3 Store

v. W
@0
iy

Keeper @g' Keeper |Check-ODT

Head Head
(%) (0] (7)) (%)
Q Q Q Q
L [[L
© © 5 :§
K3 Ko K9] K]
< - N e <
(Vp] A (V)] w (Vg

Tail Tail Tail
Wow | created new file!
i 1
pop_file_from_sheli push_file to shelf(1)
NO WORK NO WORK

L L

Office Clerk 0 OFFiEe CIETK 1o vivek kumar OFFiEE CleFk2 Office Clerk 3

Wo rk—Stea lin

o Ss
\Ill\'f.
1k N
N

I I @ kd
| P (e [L
15 5 5 5
O O O O
-4 _C < N <
(Yp] i ["p) (Vp)] Vs
bush_file to shelf(0) Tail Tail
pop_file_from_shelf(0)
Wow | created new file!
push_file_to_shelf(1)
NO WORK NO WORK

« ei—= (¢ to— (d ¢ ¢ ¢

Office Clerk 0 OFFiEe CIETK 1o vivek kumar OFFiEE CleFk2 Office Clerk 3 '

Wo rk—Stea lin

o Ss
\Ill\'f.

3 »
N

(V] (V]
Q Q
[L
G— Y—
e O
S =
3 3
c <
))

‘ SHeIf oleiIes
Shelf of Files

bush_file to shelf(0)
pop_file_from_shelf(0)

Tail

Wow | created new file!
push_file_to_shelf(1)

NO WORK NO WORK

« ei—= (¢ to— (d ¢ ¢ ¢

Office Clerk 0 OFFiEe CIETK 1o vivek kumar OFFiEE CleFk2 office Clerk 3

Wo rk—Stea lin

LS
hn!“"—'- D
N

‘ Shelf of'FiIes
Shelf of Files
Shelf of Files

bush_file to shelf(0)
pop_file_from_shelf(0)

Tail

Wow | created new file!
push_file_to_shelf(1)

pop_file_from_shelf(1

=3 | NO WORK

Office Clerk 0 Office Clerk 1o viek kumar Office Clerk 2 Office Clerk 3

Wo rk—Stea lin

LS
hn!“"—'- D
N

‘ Shelf of'FiIes
Shelf of Files
Shelf of Files

bush_file to shelf(0)
pop_file_from_shelf(0)

Wow | created new file!
push_file_to_shelf(1)

pop_file_from_shelf(1

random shelf

| S | NO WORK

Office Clerk 0 Office Clerk 1o viek kumar Office Clerk 2 office Clerk 3

~Shelf of Files

Oﬁg(IEFk"_O

Oﬁg Clerk 1o vivek kumar Oﬂ*’JLIE‘?_Z

random shelf
(Q NO WORK

(%)
<@
T
Y

o
=

Q
-
(Vp]

25

Ié'?3

Task Scheduling Analogy With an Office

Office
File d (‘ Office Clerk

Task <

Lock (usually implemented through compare-and-
swap atomic operations, e.g., gcc built-in atomics) Worker Thread (e'g" Pthread)

Shelf of Files in Work-stealing

Per worker LIFO queue
(“deque”), where the victim
push and pop tasks from the tail
and thief steals task from the
head. Pop and steal are
serialized on a deque only in
case there is one task remaining

26

Shelf of Files in Work-sharing

JUOAROCUN R Do

Global FIFO queue

© Vivek Kumar

Work-Sharing v/s Work-Stealing

. Sorry, onl
Sorry, only Work-Sharing onenta
time Store

23 guuuuuuuuuuuuuu

Shelf of
Files

 Work-sharing
— Busy worker re-distributes the task eagerly

— Easy implementation through global task T
pOOI ZVP:_Ifi(l:eri?(ie_(:;;\fA(l)ﬁl Wow | created new pop_file_from_shel
push_file_to_shelf()
Access to the global pool needs to be - /
synchronized: scalability bottleneck ki —R AR PN il -
Office Office Office Office
Clerk_0 Clerk_1 Clerk_2 Clerk_3

* Work-stealing

— Busy worker pays little overhead to enable
stealing

e Alockis required for pop and steal only in case
single task remaining on deque (only feasible by
using atomic operations)

* |dle worker steals the tasks from busy workers « i ron s

pop_file_from_shelf(0)/|

Shelf of
Files

— Distributed task pools ”
— Better scalability ({Q
* NUMA? v o
Office Office Office Office
Clerk_0 Clerk_1 Clerk_2 E?rk_a

© Vivek Kumar

Next Class

* Types of work-stealing
* Memoization

* Quiz-2 during next lecture (Tuesday)
— Syllabus: Lectures 05-08

28

Reading Materials

* A Java Fork/Join framework, Doug Lea, ACM,
2000

— http://gee.cs.oswego.edu/dl/papers/fj.pdf

29

http://gee.cs.oswego.edu/dl/papers/fj.pdf

