
Lecture 09: Types of Work-Stealing

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE502: Foundations of Parallel Programming

Last Class – Task Scheduling Paradigms

Work-Sharing

2

Work-Stealing

© Vivek Kumar

Today’s Class

3

• Types of work-stealing scheduling
– Work-first
– Help-first

• Quiz-2

© Vivek Kumar

Types of Work-Stealing

• Work-first
– Cilk, X10, TryCatchWS

• Help-first
– Habanero-C library (HClib), Java fork/join

4
© Vivek Kumar

Types of Work-Stealing

5

1. finish {
2. async S1;
3. //continuation of S1
4. async S2;
5. //continuation of S2
6. S3;
7. }

start_finish();
push_task_to_runtime(Line_3+);
S1;
if(Line_3+_stolen) return;
push_task_to_runtime(Line_5+);
S2;
if(Line_5+_stolen) return;
S3;
end_finish();

start_finish();
push_task_to_runtime(S1);
push_task_to_runtime(S2);
S3;
end_finish();

Work-first

Help-first

Source: Work-first and help-first scheduling policies for async-finish task parallelism, Guo et. al., IPDPS 2009

With single worker, program execution using
work-first policy is similar to serial execution

Points to ponder
• What task is getting pushed to deque

• Continuation in W.F.
• “async” in H.F.

• When victim becomes a thief
• When immediate continuation is

stolen in W.F.
• When all asyncs are stolen in H.F.

Parallel Array Sum using async and
finish Constructs

6
Source:
https://wiki.rice.edu/confluence/download/attachments/4435861/comp322-s16-lec1-
slides.pdf?version=1&modificationDate=1452732285045&api=v2

How tasks will be
executed in this program
over work-first and help-

first work-stealing
scheduler?

Types of Work-Stealing

Does it affect steal operations?

7

finish {
 for(int i=0; i<N; i++) {
 async S; // S does not spawn any async
 }
}

Head

Tail

Head

Tail

Head

Tail

Head

Tail

Head

Tail

Head

Tail

Work-first: at any given time there will be just one task
available for stealing. New task will be generated only after
the first one is stolen, leading to serialized steals. This will

become scalability bottleneck with large number of workers

Help-first: plenty of tasks available for
stealing as all the tasks are created upfront.

© Vivek Kumar

Types of Work-Stealing

• Does it affect context switches?
– Work-first
• Every steal will triggers a context switch of the victim

– Help-first
• Every task is executed after a context switch

8Source: https://wiki.rice.edu/confluence/download/attachments/5212761/comp322-s11-lec11-slides-
v1.pdf?version=1&modificationDate=1325608569404&api=v2

Work-Stealing Overheads

• As side-effects, work-stealing schedulers incurs
some overheads
– Deque management

• Push
• Pop
• Steal

– Insignificant overheads as steals are infrequent

– State management
• Allocating tasks on heap

– Can we control this by using granularity control?

– Code transformations in case of compiler based
implementation of work-stealing

But how much of overheads??

Quick Glance Over Work-Stealing Overheads

10
Source: Work-stealing without the baggage, Kumar et. al., OOPSLA 2012

X10 Language from IBM (Compiler Based Work-First Implementation)

Deque
Management

State Management by
Allocating Task on Heap

Compiler generated code for
correct termination of tasks

© Vivek Kumar

Quick Glance Over Work-Stealing Overheads

11
Source: Work-stealing without the baggage, Kumar et. al., OOPSLA 2012

Java Fork/Join Framework (Library Based Help-First Implementation)

Deque
Management

State Management by
Allocating Task on Heap

Compiler generated code for
correct termination of tasks

© Vivek Kumar

Next Class

• Memoization, Loop-level Parallelism, False
Sharing

12

Reading Materials

• Work-first and help-first scheduling policies for
async-finish task parallelism, Guo et. al. IPDPS
2009
– http://www.cs.rice.edu/~yguo/pubs/PID824943.p

df

13

http://www.cs.rice.edu/~yguo/pubs/PID824943.pdf
http://www.cs.rice.edu/~yguo/pubs/PID824943.pdf

