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Last Class
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• Types of work-stealing
• Work-stealing overheads
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Today’s Class
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• Loop level parallelism
• False sharing



Observations on finish-for-async Version of 
Parallel Matrix Multiplication 

• finish and async are general constructs, and are 
not specific to loops

• Loops in sequential version of matrix 
multiplication are “perfectly nested”
– e.g., no intervening statement between “for(i = ...)” 

and “for(j = ...)” 
• The ordering of loops nested between finish and 

async is arbitrary 
– They are parallel loops and their iterations can be 

executed in any order
4

Source: 
https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec11-slides-
v1.key.pdf?version=1&modificationDate=1483206144935&api=v2



Loop Level Parallelism
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• Case-1: S(i) is doing the same amount of 
computation in each iteration
– Static decomposition is applied and each worker receives 

equal sized chunk of the for-loop
• Pros:

– Perfect load balancing
» total tasks = total workers (assuming SIZE%num_workers==0)

• Cons
– Programmer has to modify the sequential code for avoiding tasking 

overheads and for achieving perfect load balancing
» Hampers productivity as no serial elision

void foo() { 
  for (uint64_t i=0; i<SIZE; i++) { 
    S(i); // can execute in parallel for all i  
  }
}
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Loop Level Parallelism
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• Case-2: S(i) is NOT doing the same amount of computation 
in each iteration
– Static decomposition still possible but the programmer has to 

divide total iterations into “small chunks” (tiling)
• Pros:

– Perfect load balancing is still possible if total_chunks >> total_workers
• Cons

– Programmer has to modify the sequential code for avoiding tasking overheads 
and for achieving perfect load balancing
» Hampers productivity as no serial elision

– If S(i) does not create any async then there is a single producer producing large 
number of tasks and there are multiple consumer
» How does it affects work-first and help-first scheduling ?

void foo() { 
  for (uint64_t i=0; i<SIZE; i++) { 
    S(i); // can execute in parallel for all i  
  }
}
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“forasync” – Construct for Harnessing 
Loop Level Parallelism in HClib
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• loop_domain_t loop = {lowBound, highBound, loopStride, tileSize};
• forasync1D(loop_domain_t* loop, lambda_function, mode);

• loop_domain_t loop[2] = { {lowBound0, highBound0, loopStride0, tileSize0}, {…} };
• forasync2D(loop_domain_t* loop, lambda_function, mode);

• loop_domain_t loop[3] = { {lowBound0, highBound0, loopStride0, tileSize0}, {…}, {…} };
• forasync3d(loop_domain_t* loop, lambda_function, mode);

• mode 
– FORASYNC_MODE_RECURSIVE: recursively partition total iteration space until “tileSize” is reached
– FORASYNC_MODE_FLAT: chunk iterations into blocks of length “tileSize”

void foo() {
  loop_domain_t loop = {0, SIZE, 1, tile_size}; 
  finish([&]() {
    forasync1D (&loop, [=](int i) { 
      S(i); // can execute in parallel for all i  
    }, FORASYNC_MODE_RECURSIVE);
  });
}
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FORASYNC_MODE_FLAT
void foo() {
  loop_domain_t loop = {0, 8, 1, 1}; 
  finish([&]() {
    forasync1D (&loop, [=](int i) { 
      S(i); // can execute in parallel for all i  
    }, FORASYNC_MODE_FLAT);
  });
}

Work = O(n)
CPL = O(n)

Source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec02_parallelism.pdf



FORASYNC_MODE_RECURSIVE 
(Divide-and-Conquer)

void foo() {
  loop_domain_t loop = {0, 8, 1, 1}; 
  finish([&]() {
    forasync1D (&loop, [=](int i) { 
      S(i); // can execute in parallel for all i  
    }, FORASYNC_MODE_RECURSIVE);
  });
}

Work = O(n)
CPL = O(log n)

Modification of source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec02_parallelism.pdf



Question
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• In a possible scenario, HClib (help-first  scheduling) 
is initialized with a single worker. This worker is 
having a deque of size N. You have to launch a 
forasync1D computation with loop_domain_t = {0, 
2N, 1, 1}. Will there will be a deque overflow?
– Yes if FORASYNC_MODE_FLAT 
– No if FORASYNC_MODE_RECURSIVE Why ?
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Parallelizing Matrix Multiplication
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for (uint64_t i=0; i<N; i++) {
  for (uint64_t j=0; j<N; j++) {
    C[i][j] = 0;  
 }
}

for (uint64_t i=0; i<N; i++) {
  for (uint64_t j=0; j<N; j++) {
    for (uint64_t k=0; k<N; k++) {
      C[i][j] += A[i][k] * B[k][j];
    }
  }
}

• Sequential matrix multiplication (NxN)
– How to parallelize using forasync?
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Parallelizing Matrix Multiplication
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loop_domain_t loop[2] = { {0, N, 1, tile}, {0, N, 1, tile} };

 
  forasync2D (loop, [=] (int i, int j) {
      C[i][j] = 0;  
  }, FORASYNC_MODE_RECURSIVE);

  forasync2D (loop, [=] (int i, int j) {
      for (uint64_t k=0; k<N; k++) {
        C[i][j] += A[i][k] * B[k][j];
      }
  }, FORASYNC_MODE_RECURSIVE);

• Parallel matrix multiplication (NxN)
– forasync2D 

Data Race !!
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Parallelizing Matrix Multiplication
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loop_domain_t loop[2] = { {0, N, 1, tile}, {0, N, 1, tile} };

finish {[&]() {
  forasync2D (loop, [=] (int i, int j) {
      C[i][j] = 0;  
  }, FORASYNC_MODE_RECURSIVE);
});

finish {[&]() {
  forasync2D (loop, [=] (int i, int j) {
      for (uint64_t k=0; k<N; k++) {
        C[i][j] += A[i][k] * B[k][j];
      }
  }, FORASYNC_MODE_RECURSIVE);
});

• Parallel matrix multiplication (NxN)
– forasync2D 
• High productivity achieved ! Co
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Today’s Class
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• Loop level parallelism
• False sharing



Revisiting the ArraySum Program We 
Saw in Lecture 05 …
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double array[SIZE]; // initialized with random numbers

void ArraySum() { 
  double sum = 0;
  for (uint64_t i=0; i<SIZE; i++) { 
    sum += array[i];   
  }
}

Sequential ArraySum

Code available on github: https://github.com/vivkumar/cse502/blob/master/hclib/test/lec09/
© Vivek Kumar
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double array[SIZE]; // initialized with random numbers

void ArraySum() { 
  double sum[num_workers()]; // zero initialized
  uint64_t chunkSize = SIZE / num_workers();
  finish {
    for (int worker=0; worker<num_workers(); worker++) { 
      async {
        uint64_t start = worker * chunkSize;
        uint64_t end = start + chunkSize;
        for (uint64_t i=start; i<end; i++) { 
          sum[worker] += array[i];   
        }        
      }
    }
  }
  double result = 0;
  for (int worker=0; worker<num_workers(); worker++)
    result += sum[worker];
}

Parallel ArraySum Using async-finish
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Speedup Analysis
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Speedup of parallel ArraySum over its sequential 
implementation on a 12 core Intel E5-2667 processor
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double array[SIZE]; // initialized with random numbers

void ArraySum() { 
  double sum[num_worker()]; // zero initialized
  uint64_t chunkSize = SIZE / num_workers();
  finish {
    for (int worker=0; worker<num_workers(); worker++) { 
      async {
        uint64_t start = worker * chunkSize;
        uint64_t end = start + chunkSize;
        double my_local_sum = 0;
        for (uint64_t i=start; i<end; i++) { 
          my_local_sum += array[i];   
        }       
        sum[worker] = my_local_sum; 
      }
    }
  }
  double result = 0;
  for (int worker=0; worker<num_workers(); worker++)
    result += sum[worker];
}

Parallel ArraySum Using async-finish 
(with a different approach)
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Speedup Analysis
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Speedup of two different implementations of parallel ArraySum over its 

sequential implementation on a 12 core Intel E5-2667 processor
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Source: https://youtu.be/NJ46OXN45eU



Slide Source: CMU

Need to guarantee that all processors 
see a consistent value (i.e., consistent 
updates) for the same memory location



Definition of 
Coherence

Dividing a memory location’s lifetime into hypothetical epochs, where
1. Every epoch has a either a single writer or multiple readers

(write serialization: ex: if P3 observes u having value 1 and then 2, 
then no processor can observe u having value 2 before 1).

2. The value of the memory location propagates from the end of one 
epoch to the beginning of the next epoch 
(value propagation: the new value eventually gets to other cores. P3. 
writes 7 to u. This value is propagated to next epochs, where P1 and 
P2 reads u to find its updated value as 7).
A cache coherence protocol maintains these two invariants.
(The granularity of coherence is a cache line size.)

Source: http://classes.engineering.wustl.edu/cse539/web/lectures/mem_coherence_snoop.pdf
23



Hardware Cache Coherence

• Basic idea
– Processor/cache broadcasts its write/update to a 

memory location to all other processors
– Other caches that that memory address either 

update or invalidates its local copy



False Sharing

Cache Line



False Sharing



False Sharing

Thread 1

Main Memory

Core 1
Thread 2

Core 2

Invalidate
Cache Cache 

Sources: https://people.umass.edu/tongping/pubs/dthreads-final.pptx, and https://people.umass.edu/tongping/pubs/sheriff-final.pptx

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx


False Sharing

Sources: https://people.umass.edu/tongping/pubs/dthreads-final.pptx, and https://people.umass.edu/tongping/pubs/sheriff-final.pptx

Thread 1 Thread 2

Invalidate

Main Memory

Core 1 Core 2

Cache Cache 

False sharing occurs when threads on different processors modify 
variables that reside on the same cache line. This stall the CPU, 
invalidates the cache line, and forces a memory update to maintain 
cache coherency

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx


Avoiding False Sharing

Using local variables in parallel region Padding the array



Next Class

• Task affinity with HPTs
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