
Lecture 10: Loop-level Parallelism,
False Sharing

Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE502: Foundations of Parallel Programming

Last Class

2

• Types of work-stealing
• Work-stealing overheads

© Vivek Kumar

Today’s Class

3

• Loop level parallelism
• False sharing

Observations on finish-for-async Version of
Parallel Matrix Multiplication

• finish and async are general constructs, and are
not specific to loops

• Loops in sequential version of matrix
multiplication are “perfectly nested”
– e.g., no intervening statement between “for(i = ...)”

and “for(j = ...)”
• The ordering of loops nested between finish and

async is arbitrary
– They are parallel loops and their iterations can be

executed in any order
4

Source:
https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec11-slides-
v1.key.pdf?version=1&modificationDate=1483206144935&api=v2

Loop Level Parallelism

5

• Case-1: S(i) is doing the same amount of
computation in each iteration
– Static decomposition is applied and each worker receives

equal sized chunk of the for-loop
• Pros:

– Perfect load balancing
» total tasks = total workers (assuming SIZE%num_workers==0)

• Cons
– Programmer has to modify the sequential code for avoiding tasking

overheads and for achieving perfect load balancing
» Hampers productivity as no serial elision

void foo() {
 for (uint64_t i=0; i<SIZE; i++) {
 S(i); // can execute in parallel for all i
 }
}

© Vivek Kumar

Loop Level Parallelism

6

• Case-2: S(i) is NOT doing the same amount of computation
in each iteration
– Static decomposition still possible but the programmer has to

divide total iterations into “small chunks” (tiling)
• Pros:

– Perfect load balancing is still possible if total_chunks >> total_workers
• Cons

– Programmer has to modify the sequential code for avoiding tasking overheads
and for achieving perfect load balancing
» Hampers productivity as no serial elision

– If S(i) does not create any async then there is a single producer producing large
number of tasks and there are multiple consumer
» How does it affects work-first and help-first scheduling ?

void foo() {
 for (uint64_t i=0; i<SIZE; i++) {
 S(i); // can execute in parallel for all i
 }
}

© Vivek Kumar

“forasync” – Construct for Harnessing
Loop Level Parallelism in HClib

7

• loop_domain_t loop = {lowBound, highBound, loopStride, tileSize};
• forasync1D(loop_domain_t* loop, lambda_function, mode);

• loop_domain_t loop[2] = { {lowBound0, highBound0, loopStride0, tileSize0}, {…} };
• forasync2D(loop_domain_t* loop, lambda_function, mode);

• loop_domain_t loop[3] = { {lowBound0, highBound0, loopStride0, tileSize0}, {…}, {…} };
• forasync3d(loop_domain_t* loop, lambda_function, mode);

• mode
– FORASYNC_MODE_RECURSIVE: recursively partition total iteration space until “tileSize” is reached
– FORASYNC_MODE_FLAT: chunk iterations into blocks of length “tileSize”

void foo() {
 loop_domain_t loop = {0, SIZE, 1, tile_size};
 finish([&]() {
 forasync1D (&loop, [=](int i) {
 S(i); // can execute in parallel for all i
 }, FORASYNC_MODE_RECURSIVE);
 });
}

© Vivek Kumar

FORASYNC_MODE_FLAT
void foo() {
 loop_domain_t loop = {0, 8, 1, 1};
 finish([&]() {
 forasync1D (&loop, [=](int i) {
 S(i); // can execute in parallel for all i
 }, FORASYNC_MODE_FLAT);
 });
}

Work = O(n)
CPL = O(n)

Source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec02_parallelism.pdf

FORASYNC_MODE_RECURSIVE
(Divide-and-Conquer)

void foo() {
 loop_domain_t loop = {0, 8, 1, 1};
 finish([&]() {
 forasync1D (&loop, [=](int i) {
 S(i); // can execute in parallel for all i
 }, FORASYNC_MODE_RECURSIVE);
 });
}

Work = O(n)
CPL = O(log n)

Modification of source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec02_parallelism.pdf

Question

10

• In a possible scenario, HClib (help-first scheduling)
is initialized with a single worker. This worker is
having a deque of size N. You have to launch a
forasync1D computation with loop_domain_t = {0,
2N, 1, 1}. Will there will be a deque overflow?
– Yes if FORASYNC_MODE_FLAT
– No if FORASYNC_MODE_RECURSIVE Why ?

© Vivek Kumar

Parallelizing Matrix Multiplication

11

for (uint64_t i=0; i<N; i++) {
 for (uint64_t j=0; j<N; j++) {
 C[i][j] = 0;
 }
}

for (uint64_t i=0; i<N; i++) {
 for (uint64_t j=0; j<N; j++) {
 for (uint64_t k=0; k<N; k++) {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
}

• Sequential matrix multiplication (NxN)
– How to parallelize using forasync?

© Vivek Kumar

Parallelizing Matrix Multiplication

12

loop_domain_t loop[2] = { {0, N, 1, tile}, {0, N, 1, tile} };

 forasync2D (loop, [=] (int i, int j) {
 C[i][j] = 0;
 }, FORASYNC_MODE_RECURSIVE);

 forasync2D (loop, [=] (int i, int j) {
 for (uint64_t k=0; k<N; k++) {
 C[i][j] += A[i][k] * B[k][j];
 }
 }, FORASYNC_MODE_RECURSIVE);

• Parallel matrix multiplication (NxN)
– forasync2D

Data Race !!

© Vivek Kumar

Parallelizing Matrix Multiplication

13

loop_domain_t loop[2] = { {0, N, 1, tile}, {0, N, 1, tile} };

finish {[&]() {
 forasync2D (loop, [=] (int i, int j) {
 C[i][j] = 0;
 }, FORASYNC_MODE_RECURSIVE);
});

finish {[&]() {
 forasync2D (loop, [=] (int i, int j) {
 for (uint64_t k=0; k<N; k++) {
 C[i][j] += A[i][k] * B[k][j];
 }
 }, FORASYNC_MODE_RECURSIVE);
});

• Parallel matrix multiplication (NxN)
– forasync2D
• High productivity achieved ! Co

de
 a

va
ila

bl
e

on
 g

ith
ub

: h
tt

ps
:/

/g
ith

ub
.c

om
/v

iv
ku

m
ar

/c
se

50
2/

bl
ob

/m
as

te
r/

hc
lib

/t
es

t/
le

c1
1/

© Vivek Kumar

Today’s Class

14

• Loop level parallelism
• False sharing

Revisiting the ArraySum Program We
Saw in Lecture 05 …

15

16

double array[SIZE]; // initialized with random numbers

void ArraySum() {
 double sum = 0;
 for (uint64_t i=0; i<SIZE; i++) {
 sum += array[i];
 }
}

Sequential ArraySum

Code available on github: https://github.com/vivkumar/cse502/blob/master/hclib/test/lec09/
© Vivek Kumar

17

double array[SIZE]; // initialized with random numbers

void ArraySum() {
 double sum[num_workers()]; // zero initialized
 uint64_t chunkSize = SIZE / num_workers();
 finish {
 for (int worker=0; worker<num_workers(); worker++) {
 async {
 uint64_t start = worker * chunkSize;
 uint64_t end = start + chunkSize;
 for (uint64_t i=start; i<end; i++) {
 sum[worker] += array[i];
 }
 }
 }
 }
 double result = 0;
 for (int worker=0; worker<num_workers(); worker++)
 result += sum[worker];
}

Parallel ArraySum Using async-finish
Co

de
 a

va
ila

bl
e

on
 g

ith
ub

: h
tt

ps
:/

/g
ith

ub
.c

om
/v

iv
ku

m
ar

/c
se

50
2/

bl
ob

/m
as

te
r/

hc
lib

/t
es

t/
le

c0
9/

© Vivek Kumar

Speedup Analysis

18

Speedup of parallel ArraySum over its sequential
implementation on a 12 core Intel E5-2667 processor

0
1
2
3
4
5
6
7
8
9

10
11

1 2 4 6 8 10 12

First_version

HCLIB_WORKERS

Sp
ee

du
p

© Vivek Kumar

19

double array[SIZE]; // initialized with random numbers

void ArraySum() {
 double sum[num_worker()]; // zero initialized
 uint64_t chunkSize = SIZE / num_workers();
 finish {
 for (int worker=0; worker<num_workers(); worker++) {
 async {
 uint64_t start = worker * chunkSize;
 uint64_t end = start + chunkSize;
 double my_local_sum = 0;
 for (uint64_t i=start; i<end; i++) {
 my_local_sum += array[i];
 }
 sum[worker] = my_local_sum;
 }
 }
 }
 double result = 0;
 for (int worker=0; worker<num_workers(); worker++)
 result += sum[worker];
}

Parallel ArraySum Using async-finish
(with a different approach)

Co
de

 a
va

ila
bl

e
on

 g
ith

ub
: h

tt
ps

:/
/g

ith
ub

.c
om

/v
iv

ku
m

ar
/c

se
50

2/
bl

ob
/m

as
te

r/
hc

lib
/t

es
t/

le
c0

9/

© Vivek Kumar

Speedup Analysis

20
Speedup of two different implementations of parallel ArraySum over its

sequential implementation on a 12 core Intel E5-2667 processor

0
1
2
3
4
5
6
7
8
9

10
11

1 2 4 6 8 10 12

First_version
Second_version

HCLIB_WORKERS

Sp
ee

du
p

© Vivek Kumar

Source: https://youtu.be/NJ46OXN45eU

Slide Source: CMU

Need to guarantee that all processors
see a consistent value (i.e., consistent
updates) for the same memory location

Definition of
Coherence

Dividing a memory location’s lifetime into hypothetical epochs, where
1. Every epoch has a either a single writer or multiple readers

(write serialization: ex: if P3 observes u having value 1 and then 2,
then no processor can observe u having value 2 before 1).

2. The value of the memory location propagates from the end of one
epoch to the beginning of the next epoch
(value propagation: the new value eventually gets to other cores. P3.
writes 7 to u. This value is propagated to next epochs, where P1 and
P2 reads u to find its updated value as 7).
A cache coherence protocol maintains these two invariants.
(The granularity of coherence is a cache line size.)

Source: http://classes.engineering.wustl.edu/cse539/web/lectures/mem_coherence_snoop.pdf
23

Hardware Cache Coherence

• Basic idea
– Processor/cache broadcasts its write/update to a

memory location to all other processors
– Other caches that that memory address either

update or invalidates its local copy

False Sharing

Cache Line

False Sharing

False Sharing

Thread 1

Main Memory

Core 1
Thread 2

Core 2

Invalidate
Cache Cache

Sources: https://people.umass.edu/tongping/pubs/dthreads-final.pptx, and https://people.umass.edu/tongping/pubs/sheriff-final.pptx

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

False Sharing

Sources: https://people.umass.edu/tongping/pubs/dthreads-final.pptx, and https://people.umass.edu/tongping/pubs/sheriff-final.pptx

Thread 1 Thread 2

Invalidate

Main Memory

Core 1 Core 2

Cache Cache

False sharing occurs when threads on different processors modify
variables that reside on the same cache line. This stall the CPU,
invalidates the cache line, and forces a memory update to maintain
cache coherency

https://people.umass.edu/tongping/pubs/dthreads-final.pptx
https://people.umass.edu/tongping/pubs/sheriff-final.pptx

Avoiding False Sharing

Using local variables in parallel region Padding the array

Next Class

• Task affinity with HPTs

30

Acknowledgements
• Several of the slides used in this course are borrowed

from the following online course materials:
– Course COMP322, Prof. Vivek Sarkar, Rice University
– Course COMP 422, Prof. John Mellor-Crummey, Rice

University
– Course CSE539S, Prof. I-Ting Angelina Lee, Washington

University in St. Louis
• Contents are also borrowed from following sources:
– “Introduction to Parallel Computing” by Ananth Grama,

Anshul Gupta, George Karypis, and Vipin Kumar. Addison
Wesley, 2003

– https://computing.llnl.gov/tutorials/parallel_comp/
– https://images.google.com/

https://computing.llnl.gov/tutorials/parallel_comp/
https://images.google.com/

