CSE502: Foundations of Parallel Programming

Lecture 11: Mutual Exclusion in
async-finish Program

Vivek Kumar
Computer Science and Engineering
IIT Delhi
vivekk@iiitd.ac.in

Recap (1/2)

* Loop level parallelism

High productivity

void foo() {
loop_domain_t loop =]{0, 8, 1, 1};
finish([&]() {
forasynclD (&loop, [=](int i) {
S(i); // can execute in parallel for all i

})3’ OPETYPED: Multiple producer

} Multiple consumer

Avoids deque overflow

(faster task diffusion)

Recap (2/2)

* False sharing

x and y are allocated in n Memory

memory such that they

share same cache block. I I I I

{ | B e
@ G Processors

L | >

() [,
&)

Ping-pong effect on
cache-line (due to
cache-coherency
protocol). Processors
suffer cache misses.

False sharing: threads
running on different
processors/cores
modify unshared data
that share the same
cache line

Today’s Class

* Mutual exclusion in async-finish program

Mutual Exclusion

* Critical section: a block of code that access
shared modifiable data or resource that
should be operated on by only one thread at a
time.

* Mutual exclusion: a property that ensures
that a critical section is only executed by a
thread at a time.

— Otherwise it results in a race condition!

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor Programming” by
Maurice Herlihy and Nir Shavit

Threads

* Athread A is (formally) a sequence a,,
a,, ...of events

— Notation: a; » a, indicates order

a, a

1---u*

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor Programming” by
Maurice Herlihy and Nir Shavit

Example Thread Events

* Assign to shared variable
* Assign to local variable

* Invoke method

e Return from method

* Lots of other things ...

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor Programming” by
Maurice Herlihy and Nir Shavit

Concurrency

* Thread A
e e

* Thread B

e

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor Programming” by 3
Maurice Herlihy and Nir Shavit

Interleavings

e Events of two or more threads

— Interleaved
— Not necessarily independent (why?)

T i

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor Programming” by
Maurice Herlihy and Nir Shavit

What we Learned in Lecture 06

 We saw two different cases of data-races
using the examples of parallel ArraySum and
parallel MatrixMultiplication. We were able to
resolve these data-races by correct
placements of async and finish

* However, there are many cases in practice
when two tasks legitimately need to perform
conflicting accesses to shared locations
without incurring data-races

10
© Vivek Kumar

Incrementing Pointer Content in Parallel

void increment(uint64_ t* pointer, uint64_t iterations) {
loop domain_t loop = {@, iterations, 1, 1 };
finish ([&]() {
forasynclD(&loop, [=](uint64_t i) {

*pointer += 1;

}, FORASYNC_MODE_RECURSIVE);
1)

} 4

N

Critical Section

11
© Vivek Kumar

Incrementing Pointer Content in Parallel

void increment(uint64_ t* pointer, uint64_t iterations) {

loop domain_t loop = {@, iterations, 1, 1 };

finish ([&]() {

forasynclD(&loop, [=](uint64_t i) {

pthread_mutex_lock(&mutex);
*pointer += 1;
pthread_mutex_unIock(&mu
}, FORASYNC_MODE_RECURSIVE);

1)
}

4

Critical Section

One way to resolve
this data-race is by
using a mutex lock

12
© Vivek Kumar

Analyzing our Counter Increment Example

* Only one
thread can
get the “key”
to enter the
critical
section

Rest all
threads will
be queued to
get the lock

counter++;

13

Properties of a Good Locking Algorithm

e Safety guarantee

— Mutual exclusion

* Progress guarantee

— Deadlock freedom
— Starvation freedom

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor Programming” by
Maurice Herlihy and Nir Shavit

14

Properties of a Good Locking Algorithm

e Mutual exclusion

* Deadlock freedom: system as a whole makes
progress.
If some thread calls lock() and never returns,
then other threads must complete lock() and
unlock() calls infinitely often.

e Starvation freedom

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor Programming” by 15
Maurice Herlihy and Nir Shavit

Properties of a Good Locking Algorithm

e Mutual exclusion

* Deadlock freedom: system as a whole makes

progress.
If some thread calls lock() and never returns,
then other threads must complete lock() and
unlock() calls infinitely often.

e Starvation freedom: A thread should not
indefinitely hold the lock for doing some big
computation while other threads keep waiting
to get this lock

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor Programming” by 16
Mauria® Herlihy and Nir Shavit

isolated Construct in HClib

isolated([&]() {S; });

e |solated construct identifies a critical section

— Introduced by Habanero-Java that also has a very mature
implementation of isolated

— HClib currently has an experimental implementation of isolated

* Two tasks executing isolated constructs are guaranteed to
perform them in mutual exclusion

— Isolation guarantee applies to (isolated, isolated) pairs of
constructs, not to (isolated, non-isolated) pairs of constructs

* No parallelism constructs inside isolated

— E.g., if async is spawned then isolation guarantee will only apply
to the creation of async, not to its execution

* |solated constructs can never cause a deadlock

— Other techniques used to enforce mutual exclusion (e.g., locks)
can lead to a deadlock, if used incorrectly

Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec20-slides- 17
vl1.key.pdf?version=1&modificationDate=1483206145246&api=v2

Use of isolated to Fix the Previous

Conflicting Access

void increment(uint64_ t* pointer, uint64_t iterations) {
loop domain_t loop = {@, iterations, 1, 1 };
finish ([&]() {
forasynclD(&loop, [=](uint64 t i) {
isolated([=]() {
*pointer += 1;
1)
}, FORASYNC_MODE_ RECURSIVE);
1)
}

4

N

Critical Section

© Vivek Kumar
Code available on github: https://github.com/vivkumar/cse502/blob/master/hclib/test/lec12/

18

Lets take Another Example:
Fibonacci Reducer

uint64 t result = 0;
void fib(uint64 t n) {
if(n < THRESHOLD) {
uinté64 t value = fib_sequential(n);

result += value;

) Is this Correct ?

else {
async([=]() {
fib(n-1);
});
fib(n-2);
}
}

int main(int argc, char** argv) {

finish ([=]() {
fib(n);

1)
printf(“Fib(%” PRIu64) is %” PRIu64 ”\n”,n, result);
}

© Vivek Kumar.

19

Code available on github: https://github.com/vivkumar/cse502/blob/master/hclib/test/lec12/

Lets take Another Example:
Fibonacci Reducer

uint64 t result = 0;
void fib(uint64 t n) {
if(n < THRESHOLD) {
uinté64 t value = fib_sequential(n);
isolated([=]() {

result += value;

T
}

else {
async([=]() {
fib(n-1);
});
fib(n-2);
}
} - .
Critical Section

int main(int argc, char** argv) {

finish ([=]() {

fib(n);
1)
printf(“Fib(%” PRIu64 “) is %” PRIu64 *’\n”,n, PESUIt)ZC:;;7

© Vivek Kumar.

}

20

Is that Enough ??

void increment(uint64_ t* pointer, uint64_t iterations) {
loop domain_t loop = {@, iterations, 1, 1 };
finish ([&]() {
forasynclD(&loop, [=](uint64 t i) {
isolated([=]() {
*pointer += 1;
)5
}, FORASYNC_MODE_ RECURSIVE);
1)
}

4

This seems like it is just a syntactic
sugar to replace

pthread _mutex_lock and

pthread _mutex_unlock ?

What is so special about isolated ?

© Vivek Kumar
Code available on github: https://github.com/vivkumar/cse502/blob/master/hclib/test/lec12/

Critical Section

21

from One Account to Another

class Account {
double balance;
void debit(double amount);
void credit(double amount);
}s
class Transfer {
Account source, destination;
double amount;
void run() {
source.debit(amount);
destination.credit(amount);

}
}s
class Bank {
void fund_transfer() {
Accounts numAccounts[N];Transfer pending[TOTAL];
for(uint64_t i=0; i<TOTAL; i++) {
pending[i].run();
}
}
}s

How to parallelize

4

© Vivek Kumar

Lets Take the Example of Transferring SS

2?

22

Lets Take the Example of Transferring SS
from One Account to Another

class Account {
double balance;
void debit(double amount);
void credit(double amount);
}s
class Transfer {
Account source, destination;
double amount;
void run() {
source.debit(amount);
destination.credit(amount);

}
}s
class Bank {
void fund_transfer() {
Accounts numAccounts[N];Transfer pending[TOTAL];

Yes we can use forasync1D

within a finish

loop domain_t loop = {0, TOTAL, 1, 1}; C%ZJT‘

Finish([&]() { .
foasynclD([=](uint64_t i) { (:f\)@@QS\

pending[i].run(); R =

}, FORASYNC_MODE_RECURSIVE); V

});

}
}s5
23

© Vivek Kumar

Lets Take the Example of Transferring SS
from One Account to Another

class Account {
double balance;
void debit(double amount);
void credit(double amount);
}s
class Transfer {
Account source, destination;
double amount;
void run() {
source.debit(amount);
destination.credit(amount);

}
}s
class Bank {
void fund_transfer() { <:>
Accounts numAccounts[N];Transfer pending[TOTAL]; O
loop domain_t loop = {0, TOTAL, 1, 1};
finish([&]() {
foasynclD([=](uint64_t i) {
pending[i].run();
}, FORASYNC_MODE_RECURSIVE);
1)
}
}s

Is this Correct ?7

Data-race!!

24

© Vivek Kumar

Lets Take the Example of Transferring SS
from One Account to Another

class Account {
double balance;
void debit(double amount);
void credit(double amount);
}s
class Transfer {
Account source, destination;
double amount;
void run() {
isolated([&]() {
source.debit(amount);
destination.credit(amount);

};
}
}s
class Bank {
void fund_transfer() {
Accounts numAccounts[N];Transfer pending[TOTAL];
loop domain_t loop = {0, TOTAL, 1, 1};
finish([&]() {
foasynclD([=](uint64 t i) {
pending[i].run();
}, FORASYNC_MODE_RECURSIVE);

})s
} 25
} 5 © Vivek Kumar.

Do we still have tk
parallelism?

Lets Take the Example of Transferring SS
from One Account to Another

class Account {
double balance;
void debit(double amount);
void credit(double amount);
}s
class Transfer {
Account source, destination;
double amount;
void run() {
lock(&source); lock(&destination)
source.debit(amount);
destination.credit(amount);
unlock(&destination); unlock(&source)

}
}s
class Bank {
void fund_transfer() {
Accounts numAccounts[N];Transfer pending[TOTAL];
loop domain_t loop = {0, TOTAL, 1, 1};
finish([&]() {
foasynclD([=](uint64_t i) {
pending[i].run();
}, FORASYNC_MODE_RECURSIVE);
1)

}s 26

© Vivek Kumar

Is this correct?

© CanStockPhoto.com - csp50107200

Let’s Analyze Our Bank Transaction

+1 12

srcAccount destAccount

transfer()

ackey

cr'edl‘r()

transfer()

@

debl’r

*.

credit()

Deadlock Avoidance

* Deadlock occurs when multiple threads need
the same locks but obtain them in different
order

* Not so easy to avoid deadlocks
* |t's an active research area

Let’s try simple remedies to fix

our Bank Transaction program

29
© Vivek Kumar

Deadlock Avoidance

* Lock ordering

— Ensure that all locks are taken in same order by any
thread

e Lock timeout

— Put a timeout on lock attempts

e pthread mutex_timedlock

© Vivek Kumar

Object Based Isolation for Avoiding
Deadlock in async-finish Program

isolated(objl, obj2, ..., lambda_function)

* |n this case, programmer specifies list of objects
for which isolation is required

 Mutual exclusion is only guaranteed for instances
of isolated constructs that have a common object
in their object lists

— Standard isolated is equivalent to “isolated(*)” by
default i.e., isolation across all objects

* Experimental implementation exists in HClib

(some APIs might change in future but not the
concepts)

31
© Vivek Kumar

Code available on github: https://github.com/vivkumar/cse502/blob/master/hclib/test/lec12/

Lets Take the Example of Transferring SS
from One Account to Another

class Account {
double balance;
void debit(double amount);
void credit(double amount);

}s

class Transfer {
Account source, destination; Note: This will
double amount; never deadlock.

void run() {
isolated(&source, &destination, [&]() { —> Youcan have

source.debit(amount); objects in any
destination.credit(amount); order
})s
}
}s
class Bank { Experimental

void fund_transfer() {
Accounts numAccounts[N];Transfer pending[TOTAL]; support, hence
loop_domain_t loop = {@, TOTAL, 1, 1}; outside of finish.
enable_isolation_n(numAccounts, N); / In future you
finish([&]() {

foasynclD([=](uint64 t i) { may not even
pending[i].run(); need these two
})}, FORASYNC_MODE_RECURSIVE); API..
di;able_isolation_n(numAccounts, N);
}
}s 32

© Vivek Kumar.

Implementation of Object Based Isolation

 enable isolation n(numAccounts, N);
— Runtime will add these objects in a hashmap

— Every object is associated with a unique uint64_t counter and a
lock

» isolated(&source, &destination, lambda);

— Runtime will get these objects from the hashmap and then sort
them using the value of their counter

— Lock is then acquired on each object in the ascending (or
descending) value of the their counter

— User provided critical section is executed and then each of these
objects are unlocked (in same order)

— This technique avoids the deadlock
 disable isolation_n(numAccounts, N);
— Remove these objects from the hashmap

© Vivek Kumar

33

Pros and Cons of Object Based Isolation

* Pros
— Productivity: simpler approach than “locks”
— Deadlock-freedom property is guaranteed

* Cons
— Programmer needs to worry about getting the
object list right

— Objects in object list can only be specified at start
of the isolated construct (new objects cannot be
added later on)

Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec20-slides- 34
vl.key.pdf?version=1&modificationDate=1483206145246&apie¥w2vek Kumar

Next Class

e Mid semester review

35

