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Recap (1/2)
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• Loop level parallelism
High productivity

Multiple producer 
Multiple consumer 

(faster task diffusion)

Avoids deque overflow

Smaller CPL



Recap (2/2)
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• False sharing



Today’s Class
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• Mutual exclusion in async-finish program



Mutual Exclusion
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• Critical section: a block of code that access 
shared modifiable data or resource that 
should be operated on by only one thread at a 
time.

• Mutual exclusion: a property that ensures 
that a critical section is only executed by a 
thread at a time.
– Otherwise it results in a race condition!

Acknowledgement: Slides adopted from the companion slides for the book  "The Art of Multiprocessor Programming” by 
Maurice Herlihy and Nir Shavit 5



time

• A thread A is (formally) a sequence a0, 
a1, ... of events 
– Notation: a0 è a1 indicates order

a0

Threads

a1 a2 …

Acknowledgement: Slides adopted from the companion slides for the book  "The Art of Multiprocessor Programming” by 
Maurice Herlihy and Nir Shavit
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• Assign to shared variable
• Assign to local variable
• Invoke method
• Return from method
• Lots of other things …

Example Thread Events

Acknowledgement: Slides adopted from the companion slides for the book  "The Art of Multiprocessor Programming” by 
Maurice Herlihy and Nir Shavit
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time

time

• Thread A

• Thread B

Concurrency

Acknowledgement: Slides adopted from the companion slides for the book  "The Art of Multiprocessor Programming” by 
Maurice Herlihy and Nir Shavit

8



time

Interleavings

• Events of two or more threads
– Interleaved
– Not necessarily independent (why?)

Acknowledgement: Slides adopted from the companion slides for the book  "The Art of Multiprocessor Programming” by 
Maurice Herlihy and Nir Shavit
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What we Learned in Lecture 06
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• We saw two different cases of data-races 
using the examples of parallel ArraySum and 
parallel MatrixMultiplication. We were able to 
resolve these data-races by correct 
placements of async and finish

• However, there are many cases in practice 
when two tasks legitimately need to perform 
conflicting accesses to shared locations 
without incurring data-races

© Vivek Kumar



Incrementing Pointer Content in Parallel
void increment(uint64_t* pointer, uint64_t iterations) {
  loop_domain_t loop = {0, iterations, 1, 1 }; 
  finish ([&]() {
    forasync1D(&loop, [=](uint64_t i) {

      *pointer += 1; 

    }, FORASYNC_MODE_RECURSIVE);
  });
}
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Critical Section

© Vivek Kumar



void increment(uint64_t* pointer, uint64_t iterations) {
  loop_domain_t loop = {0, iterations, 1, 1 }; 
  finish ([&]() {
    forasync1D(&loop, [=](uint64_t i) {
      pthread_mutex_lock(&mutex);
      *pointer += 1; 
      pthread_mutex_unlock(&mutex);
    }, FORASYNC_MODE_RECURSIVE);
  });
}
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Critical Section
One way to resolve 
this data-race is by 
using a mutex lock

Incrementing Pointer Content in Parallel

© Vivek Kumar



Analyzing our Counter Increment Example
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counter++;

• Only one 
thread can 
get the “key” 
to enter the 
critical 
section

• Rest all 
threads will 
be queued to 
get the lock



Properties of a Good Locking Algorithm

• Safety guarantee
– Mutual exclusion

• Progress guarantee
– Deadlock freedom
– Starvation freedom

Acknowledgement: Slides adopted from the companion slides for the book  "The Art of Multiprocessor Programming” by 
Maurice Herlihy and Nir Shavit
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Properties of a Good Locking Algorithm

• Mutual exclusion
• Deadlock freedom: system as a whole makes 

progress.  
If some thread calls lock() and never returns, 
then other threads must complete lock() and 
unlock() calls infinitely often.

• Starvation freedom

Acknowledgement: Slides adopted from the companion slides for the book  "The Art of Multiprocessor Programming” by 
Maurice Herlihy and Nir Shavit
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Properties of a Good Locking Algorithm

• Mutual exclusion
• Deadlock freedom: system as a whole makes 

progress.  
If some thread calls lock() and never returns, 
then other threads must complete lock() and 
unlock() calls infinitely often.

• Starvation freedom: A thread should not 
indefinitely hold the lock for doing some big 
computation while other threads keep waiting 
to get this lock

•  
Acknowledgement: Slides adopted from the companion slides for the book  "The Art of Multiprocessor Programming” by 
Maurice Herlihy and Nir Shavit
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isolated Construct in HClib
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isolated([&]( ) { S; });        
• Isolated construct identifies a critical section

– Introduced by Habanero-Java that also has a very mature 
implementation of isolated

– HClib currently has an experimental implementation of isolated 
• Two tasks executing isolated constructs are guaranteed to 

perform them in mutual exclusion
– Isolation guarantee applies to (isolated, isolated) pairs of 

constructs, not to (isolated, non-isolated) pairs of constructs
• No parallelism constructs inside isolated 

– E.g., if async is spawned then isolation guarantee will only apply 
to the creation of async, not to its execution

• Isolated constructs can never cause a deadlock
– Other techniques used to enforce mutual exclusion (e.g., locks) 

can lead to a deadlock, if used incorrectly

Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec20-slides-
v1.key.pdf?version=1&modificationDate=1483206145246&api=v2



Use of isolated to Fix the Previous 
Conflicting Access

Code available on github: https://github.com/vivkumar/cse502/blob/master/hclib/test/lec12/

void increment(uint64_t* pointer, uint64_t iterations) {
  loop_domain_t loop = {0, iterations, 1, 1 }; 
  finish ([&]() {
    forasync1D(&loop, [=](uint64_t i) {
      isolated([=]() {
        *pointer += 1; 
      });
    }, FORASYNC_MODE_RECURSIVE);
  });
}

Critical Section

18
© Vivek Kumar



Lets take Another Example: 
Fibonacci Reducer

uint64_t result = 0;
void fib(uint64_t n) {
  if(n < THRESHOLD) {
   uint64_t value = fib_sequential(n);

      result += value;

  }
  else {
    async([=]() {
      fib(n-1);
    });
    fib(n-2);
  }
}

int main(int argc, char** argv) {
  finish ([=]() {
    fib(n);
  });
  printf(“Fib(%” PRIu64 “) is %” PRIu64 ”\n”,n, result);
}

Is this Correct ?

19
© Vivek Kumar



Lets take Another Example: 
Fibonacci Reducer

uint64_t result = 0;
void fib(uint64_t n) {
  if(n < THRESHOLD) {
   uint64_t value = fib_sequential(n);
      isolated([=]() {
      result += value;
      });
  }
  else {
    async([=]() {
      fib(n-1);
    });
    fib(n-2);
  }
}

int main(int argc, char** argv) {
  finish ([=]() {
    fib(n);
  });
  printf(“Fib(%” PRIu64 “) is %” PRIu64 ”\n”,n, result);
} 20

Critical Section

Co
de

 a
va

ila
bl

e 
on

 g
ith

ub
: h

tt
ps

:/
/g

ith
ub

.c
om

/v
iv

ku
m

ar
/c

se
50

2/
bl

ob
/m

as
te

r/
hc

lib
/t

es
t/

le
c1

2/

© Vivek Kumar



Is that Enough ??

Code available on github: https://github.com/vivkumar/cse502/blob/master/hclib/test/lec12/

void increment(uint64_t* pointer, uint64_t iterations) {
  loop_domain_t loop = {0, iterations, 1, 1 }; 
  finish ([&]() {
    forasync1D(&loop, [=](uint64_t i) {
      isolated([=]() {
        *pointer += 1; 
      });
    }, FORASYNC_MODE_RECURSIVE);
  });
}

This seems like it is just a syntactic 
sugar to replace 

pthread_mutex_lock and 
pthread_mutex_unlock ?

What is so special about isolated ?

21

Critical Section

© Vivek Kumar



Lets Take the Example of Transferring $$ 
from One Account to Another
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class Account {
  double balance;
  void debit(double amount);
  void credit(double amount);
};
class Transfer {
  Account source, destination;
  double amount;
  void run() {
    source.debit(amount);
    destination.credit(amount);
  }
};
class Bank {
  void fund_transfer() {
    Accounts numAccounts[N];Transfer pending[TOTAL];
    for(uint64_t i=0; i<TOTAL; i++) {
      pending[i].run();
    }
  }
};

How to parallelize ??

© Vivek Kumar



Lets Take the Example of Transferring $$ 
from One Account to Another
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class Account {
  double balance;
  void debit(double amount);
  void credit(double amount);
};
class Transfer {
  Account source, destination;
  double amount;
  void run() {
    source.debit(amount);
    destination.credit(amount);
  }
};
class Bank {
  void fund_transfer() {
    Accounts numAccounts[N];Transfer pending[TOTAL];
    loop_domain_t loop = {0, TOTAL, 1, 1};
    finish([&]() {
      foasync1D([=](uint64_t i) {
        pending[i].run();
      }, FORASYNC_MODE_RECURSIVE);
    });
  }
};

Yes we can use forasync1D 
within a finish

© Vivek Kumar



Lets Take the Example of Transferring $$ 
from One Account to Another
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class Account {
  double balance;
  void debit(double amount);
  void credit(double amount);
};
class Transfer {
  Account source, destination;
  double amount;
  void run() {
    source.debit(amount);
    destination.credit(amount);
  }
};
class Bank {
  void fund_transfer() {
    Accounts numAccounts[N];Transfer pending[TOTAL];
    loop_domain_t loop = {0, TOTAL, 1, 1};
    finish([&]() {
      foasync1D([=](uint64_t i) {
        pending[i].run();
      }, FORASYNC_MODE_RECURSIVE);
    });
  }
};

Is this Correct ??

Data-race!!

© Vivek Kumar



Lets Take the Example of Transferring $$ 
from One Account to Another
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class Account {
  double balance;
  void debit(double amount);
  void credit(double amount);
};
class Transfer {
  Account source, destination;
  double amount;
  void run() {
    isolated([&]() {
    source.debit(amount);
    destination.credit(amount);
    });
  }
};
class Bank {
  void fund_transfer() {
    Accounts numAccounts[N];Transfer pending[TOTAL];
    loop_domain_t loop = {0, TOTAL, 1, 1};
    finish([&]() {
      foasync1D([=](uint64_t i) {
        pending[i].run();
      }, FORASYNC_MODE_RECURSIVE);
    });
  }
};

Do we still have the 
parallelism?

© Vivek Kumar



Lets Take the Example of Transferring $$ 
from One Account to Another
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class Account {
  double balance;
  void debit(double amount);
  void credit(double amount);
};
class Transfer {
  Account source, destination;
  double amount;
  void run() {
    lock(&source); lock(&destination)
    source.debit(amount);
    destination.credit(amount);
    unlock(&destination); unlock(&source)
  }
};
class Bank {
  void fund_transfer() {
    Accounts numAccounts[N];Transfer pending[TOTAL];
    loop_domain_t loop = {0, TOTAL, 1, 1};
    finish([&]() {
      foasync1D([=](uint64_t i) {
        pending[i].run();
      }, FORASYNC_MODE_RECURSIVE);
    });
  }
};

Is this correct?

© Vivek Kumar
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Let’s Analyze Our Bank Transaction
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credit()

srcAccount destAccount

t1 t2

credit() ?
transfer()

debit()

transfer()

debit()

© Vivek Kumar



Deadlock Avoidance

• Deadlock occurs when multiple threads need 
the same locks but obtain them in different 
order

• Not so easy to avoid deadlocks
• It’s an active research area

Let’s try simple remedies to fix 
our Bank Transaction program

29
© Vivek Kumar



Deadlock Avoidance

• Lock ordering
– Ensure that all locks are taken in same order by any 

thread

• Lock timeout
– Put a timeout on lock attempts 
• pthread_mutex_timedlock

30
© Vivek Kumar



Object Based Isolation for Avoiding 
Deadlock in async-finish Program

31

 isolated(obj1, obj2, …, lambda_function)
• In this case, programmer specifies list of objects 

for which isolation is required
• Mutual exclusion is only guaranteed for instances 

of isolated constructs that have a common object 
in their object lists
– Standard isolated is equivalent to “isolated(*)” by 

default i.e., isolation across all objects
• Experimental implementation exists in HClib 

(some APIs might change in future but not the 
concepts)

© Vivek Kumar



Lets Take the Example of Transferring $$ 
from One Account to Another
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class Account {
  double balance;
  void debit(double amount);
  void credit(double amount);
};
class Transfer {
  Account source, destination;
  double amount;
  void run() {
    isolated(&source, &destination, [&]() {
      source.debit(amount);
      destination.credit(amount);
    });
  }
};
class Bank {
  void fund_transfer() {
    Accounts numAccounts[N];Transfer pending[TOTAL];
    loop_domain_t loop = {0, TOTAL, 1, 1};
    enable_isolation_n(numAccounts, N);
    finish([&]() {
      foasync1D([=](uint64_t i) {
        pending[i].run();
      }, FORASYNC_MODE_RECURSIVE);
    });
    disable_isolation_n(numAccounts, N);
  }
};

Note: This will 
never deadlock. 

You can have 
objects in any 

order

Experimental 
support, hence 

outside of finish. 
In future you 
may not even 

need these two 
API..
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Implementation of Object Based Isolation
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• enable_isolation_n(numAccounts, N);
– Runtime will add these objects in a hashmap
– Every object is associated with a unique uint64_t counter and a 

lock
• isolated(&source, &destination, lambda);
– Runtime will get these objects from the hashmap and then sort 

them using the value of their counter 
– Lock is then acquired on each object in the ascending (or 

descending) value of the their counter
– User provided critical section is executed and then each of these 

objects are unlocked (in same order)
–  This technique avoids the deadlock

• disable_isolation_n(numAccounts, N);
– Remove these objects from the hashmap

© Vivek Kumar



Pros and Cons of Object Based Isolation
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• Pros
– Productivity: simpler approach than “locks”
– Deadlock-freedom property is guaranteed

• Cons
– Programmer needs to worry about getting the 

object list right
– Objects in object list can only be specified at start 

of the isolated construct (new objects cannot be 
added later on)

Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec20-slides-
v1.key.pdf?version=1&modificationDate=1483206145246&api=v2© Vivek Kumar



Next Class

• Mid semester review

35


