
Lecture 11: Mutual Exclusion in
async-finish Program

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE502: Foundations of Parallel Programming

Recap (1/2)

2

• Loop level parallelism
High productivity

Multiple producer
Multiple consumer

(faster task diffusion)

Avoids deque overflow

Smaller CPL

Recap (2/2)

3

• False sharing

Today’s Class

4

• Mutual exclusion in async-finish program

Mutual Exclusion

5

• Critical section: a block of code that access
shared modifiable data or resource that
should be operated on by only one thread at a
time.

• Mutual exclusion: a property that ensures
that a critical section is only executed by a
thread at a time.
– Otherwise it results in a race condition!

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor Programming” by
Maurice Herlihy and Nir Shavit 5

time

• A thread A is (formally) a sequence a0,
a1, ... of events
– Notation: a0 è a1 indicates order

a0

Threads

a1 a2 …

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor Programming” by
Maurice Herlihy and Nir Shavit

6

• Assign to shared variable
• Assign to local variable
• Invoke method
• Return from method
• Lots of other things …

Example Thread Events

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor Programming” by
Maurice Herlihy and Nir Shavit

7

time

time

• Thread A

• Thread B

Concurrency

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor Programming” by
Maurice Herlihy and Nir Shavit

8

time

Interleavings

• Events of two or more threads
– Interleaved
– Not necessarily independent (why?)

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor Programming” by
Maurice Herlihy and Nir Shavit

9

What we Learned in Lecture 06

10

• We saw two different cases of data-races
using the examples of parallel ArraySum and
parallel MatrixMultiplication. We were able to
resolve these data-races by correct
placements of async and finish

• However, there are many cases in practice
when two tasks legitimately need to perform
conflicting accesses to shared locations
without incurring data-races

© Vivek Kumar

Incrementing Pointer Content in Parallel
void increment(uint64_t* pointer, uint64_t iterations) {
 loop_domain_t loop = {0, iterations, 1, 1 };
 finish ([&]() {
 forasync1D(&loop, [=](uint64_t i) {

 *pointer += 1;

 }, FORASYNC_MODE_RECURSIVE);
 });
}

11

Critical Section

© Vivek Kumar

void increment(uint64_t* pointer, uint64_t iterations) {
 loop_domain_t loop = {0, iterations, 1, 1 };
 finish ([&]() {
 forasync1D(&loop, [=](uint64_t i) {
 pthread_mutex_lock(&mutex);
 *pointer += 1;
 pthread_mutex_unlock(&mutex);
 }, FORASYNC_MODE_RECURSIVE);
 });
}

12

Critical Section
One way to resolve
this data-race is by
using a mutex lock

Incrementing Pointer Content in Parallel

© Vivek Kumar

Analyzing our Counter Increment Example

13

counter++;

• Only one
thread can
get the “key”
to enter the
critical
section

• Rest all
threads will
be queued to
get the lock

Properties of a Good Locking Algorithm

• Safety guarantee
– Mutual exclusion

• Progress guarantee
– Deadlock freedom
– Starvation freedom

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor Programming” by
Maurice Herlihy and Nir Shavit

14

Properties of a Good Locking Algorithm

• Mutual exclusion
• Deadlock freedom: system as a whole makes

progress.
If some thread calls lock() and never returns,
then other threads must complete lock() and
unlock() calls infinitely often.

• Starvation freedom

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor Programming” by
Maurice Herlihy and Nir Shavit

15

Properties of a Good Locking Algorithm

• Mutual exclusion
• Deadlock freedom: system as a whole makes

progress.
If some thread calls lock() and never returns,
then other threads must complete lock() and
unlock() calls infinitely often.

• Starvation freedom: A thread should not
indefinitely hold the lock for doing some big
computation while other threads keep waiting
to get this lock

•
Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor Programming” by
Maurice Herlihy and Nir Shavit

16

isolated Construct in HClib

17

isolated([&]() { S; });
• Isolated construct identifies a critical section

– Introduced by Habanero-Java that also has a very mature
implementation of isolated

– HClib currently has an experimental implementation of isolated
• Two tasks executing isolated constructs are guaranteed to

perform them in mutual exclusion
– Isolation guarantee applies to (isolated, isolated) pairs of

constructs, not to (isolated, non-isolated) pairs of constructs
• No parallelism constructs inside isolated

– E.g., if async is spawned then isolation guarantee will only apply
to the creation of async, not to its execution

• Isolated constructs can never cause a deadlock
– Other techniques used to enforce mutual exclusion (e.g., locks)

can lead to a deadlock, if used incorrectly

Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec20-slides-
v1.key.pdf?version=1&modificationDate=1483206145246&api=v2

Use of isolated to Fix the Previous
Conflicting Access

Code available on github: https://github.com/vivkumar/cse502/blob/master/hclib/test/lec12/

void increment(uint64_t* pointer, uint64_t iterations) {
 loop_domain_t loop = {0, iterations, 1, 1 };
 finish ([&]() {
 forasync1D(&loop, [=](uint64_t i) {
 isolated([=]() {
 *pointer += 1;
 });
 }, FORASYNC_MODE_RECURSIVE);
 });
}

Critical Section

18
© Vivek Kumar

Lets take Another Example:
Fibonacci Reducer

uint64_t result = 0;
void fib(uint64_t n) {
 if(n < THRESHOLD) {
 uint64_t value = fib_sequential(n);

 result += value;

 }
 else {
 async([=]() {
 fib(n-1);
 });
 fib(n-2);
 }
}

int main(int argc, char** argv) {
 finish ([=]() {
 fib(n);
 });
 printf(“Fib(%” PRIu64 “) is %” PRIu64 ”\n”,n, result);
}

Is this Correct ?

19
© Vivek Kumar

Lets take Another Example:
Fibonacci Reducer

uint64_t result = 0;
void fib(uint64_t n) {
 if(n < THRESHOLD) {
 uint64_t value = fib_sequential(n);
 isolated([=]() {
 result += value;
 });
 }
 else {
 async([=]() {
 fib(n-1);
 });
 fib(n-2);
 }
}

int main(int argc, char** argv) {
 finish ([=]() {
 fib(n);
 });
 printf(“Fib(%” PRIu64 “) is %” PRIu64 ”\n”,n, result);
} 20

Critical Section

Co
de

 a
va

ila
bl

e
on

 g
ith

ub
: h

tt
ps

:/
/g

ith
ub

.c
om

/v
iv

ku
m

ar
/c

se
50

2/
bl

ob
/m

as
te

r/
hc

lib
/t

es
t/

le
c1

2/

© Vivek Kumar

Is that Enough ??

Code available on github: https://github.com/vivkumar/cse502/blob/master/hclib/test/lec12/

void increment(uint64_t* pointer, uint64_t iterations) {
 loop_domain_t loop = {0, iterations, 1, 1 };
 finish ([&]() {
 forasync1D(&loop, [=](uint64_t i) {
 isolated([=]() {
 *pointer += 1;
 });
 }, FORASYNC_MODE_RECURSIVE);
 });
}

This seems like it is just a syntactic
sugar to replace

pthread_mutex_lock and
pthread_mutex_unlock ?

What is so special about isolated ?

21

Critical Section

© Vivek Kumar

Lets Take the Example of Transferring $$
from One Account to Another

22

class Account {
 double balance;
 void debit(double amount);
 void credit(double amount);
};
class Transfer {
 Account source, destination;
 double amount;
 void run() {
 source.debit(amount);
 destination.credit(amount);
 }
};
class Bank {
 void fund_transfer() {
 Accounts numAccounts[N];Transfer pending[TOTAL];
 for(uint64_t i=0; i<TOTAL; i++) {
 pending[i].run();
 }
 }
};

How to parallelize ??

© Vivek Kumar

Lets Take the Example of Transferring $$
from One Account to Another

23

class Account {
 double balance;
 void debit(double amount);
 void credit(double amount);
};
class Transfer {
 Account source, destination;
 double amount;
 void run() {
 source.debit(amount);
 destination.credit(amount);
 }
};
class Bank {
 void fund_transfer() {
 Accounts numAccounts[N];Transfer pending[TOTAL];
 loop_domain_t loop = {0, TOTAL, 1, 1};
 finish([&]() {
 foasync1D([=](uint64_t i) {
 pending[i].run();
 }, FORASYNC_MODE_RECURSIVE);
 });
 }
};

Yes we can use forasync1D
within a finish

© Vivek Kumar

Lets Take the Example of Transferring $$
from One Account to Another

24

class Account {
 double balance;
 void debit(double amount);
 void credit(double amount);
};
class Transfer {
 Account source, destination;
 double amount;
 void run() {
 source.debit(amount);
 destination.credit(amount);
 }
};
class Bank {
 void fund_transfer() {
 Accounts numAccounts[N];Transfer pending[TOTAL];
 loop_domain_t loop = {0, TOTAL, 1, 1};
 finish([&]() {
 foasync1D([=](uint64_t i) {
 pending[i].run();
 }, FORASYNC_MODE_RECURSIVE);
 });
 }
};

Is this Correct ??

Data-race!!

© Vivek Kumar

Lets Take the Example of Transferring $$
from One Account to Another

25

class Account {
 double balance;
 void debit(double amount);
 void credit(double amount);
};
class Transfer {
 Account source, destination;
 double amount;
 void run() {
 isolated([&]() {
 source.debit(amount);
 destination.credit(amount);
 });
 }
};
class Bank {
 void fund_transfer() {
 Accounts numAccounts[N];Transfer pending[TOTAL];
 loop_domain_t loop = {0, TOTAL, 1, 1};
 finish([&]() {
 foasync1D([=](uint64_t i) {
 pending[i].run();
 }, FORASYNC_MODE_RECURSIVE);
 });
 }
};

Do we still have the
parallelism?

© Vivek Kumar

Lets Take the Example of Transferring $$
from One Account to Another

26

class Account {
 double balance;
 void debit(double amount);
 void credit(double amount);
};
class Transfer {
 Account source, destination;
 double amount;
 void run() {
 lock(&source); lock(&destination)
 source.debit(amount);
 destination.credit(amount);
 unlock(&destination); unlock(&source)
 }
};
class Bank {
 void fund_transfer() {
 Accounts numAccounts[N];Transfer pending[TOTAL];
 loop_domain_t loop = {0, TOTAL, 1, 1};
 finish([&]() {
 foasync1D([=](uint64_t i) {
 pending[i].run();
 }, FORASYNC_MODE_RECURSIVE);
 });
 }
};

Is this correct?

© Vivek Kumar

27

Let’s Analyze Our Bank Transaction

28

credit()

srcAccount destAccount

t1 t2

credit() ?
transfer()

debit()

transfer()

debit()

© Vivek Kumar

Deadlock Avoidance

• Deadlock occurs when multiple threads need
the same locks but obtain them in different
order

• Not so easy to avoid deadlocks
• It’s an active research area

Let’s try simple remedies to fix
our Bank Transaction program

29
© Vivek Kumar

Deadlock Avoidance

• Lock ordering
– Ensure that all locks are taken in same order by any

thread

• Lock timeout
– Put a timeout on lock attempts
• pthread_mutex_timedlock

30
© Vivek Kumar

Object Based Isolation for Avoiding
Deadlock in async-finish Program

31

 isolated(obj1, obj2, …, lambda_function)
• In this case, programmer specifies list of objects

for which isolation is required
• Mutual exclusion is only guaranteed for instances

of isolated constructs that have a common object
in their object lists
– Standard isolated is equivalent to “isolated(*)” by

default i.e., isolation across all objects
• Experimental implementation exists in HClib

(some APIs might change in future but not the
concepts)

© Vivek Kumar

Lets Take the Example of Transferring $$
from One Account to Another

32

class Account {
 double balance;
 void debit(double amount);
 void credit(double amount);
};
class Transfer {
 Account source, destination;
 double amount;
 void run() {
 isolated(&source, &destination, [&]() {
 source.debit(amount);
 destination.credit(amount);
 });
 }
};
class Bank {
 void fund_transfer() {
 Accounts numAccounts[N];Transfer pending[TOTAL];
 loop_domain_t loop = {0, TOTAL, 1, 1};
 enable_isolation_n(numAccounts, N);
 finish([&]() {
 foasync1D([=](uint64_t i) {
 pending[i].run();
 }, FORASYNC_MODE_RECURSIVE);
 });
 disable_isolation_n(numAccounts, N);
 }
};

Note: This will
never deadlock.

You can have
objects in any

order

Experimental
support, hence

outside of finish.
In future you
may not even

need these two
API..

Co
de

 a
va

ila
bl

e
on

 g
ith

ub
: h

tt
ps

:/
/g

ith
ub

.c
om

/v
iv

ku
m

ar
/c

se
50

2/
bl

ob
/m

as
te

r/
hc

lib
/t

es
t/

le
c1

2/

© Vivek Kumar

Implementation of Object Based Isolation

33

• enable_isolation_n(numAccounts, N);
– Runtime will add these objects in a hashmap
– Every object is associated with a unique uint64_t counter and a

lock
• isolated(&source, &destination, lambda);
– Runtime will get these objects from the hashmap and then sort

them using the value of their counter
– Lock is then acquired on each object in the ascending (or

descending) value of the their counter
– User provided critical section is executed and then each of these

objects are unlocked (in same order)
– This technique avoids the deadlock

• disable_isolation_n(numAccounts, N);
– Remove these objects from the hashmap

© Vivek Kumar

Pros and Cons of Object Based Isolation

34

• Pros
– Productivity: simpler approach than “locks”
– Deadlock-freedom property is guaranteed

• Cons
– Programmer needs to worry about getting the

object list right
– Objects in object list can only be specified at start

of the isolated construct (new objects cannot be
added later on)

Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec20-slides-
v1.key.pdf?version=1&modificationDate=1483206145246&api=v2© Vivek Kumar

Next Class

• Mid semester review

35

