
Lecture 12: Midterm Review

Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in
© Vivek Kumar

CSE502: Foundations of Parallel Programming

Multicores Saves Power

• Nowadays (post Dennard Scaling), power is
proportional to (Frequency)3

• Baseline example: single 1GHz core with power P
– Option A: Increase clock frequency to 2GHz

• Power = 8P
– Option B: Use 2 cores at 1 GHz each

• Power = 2P

• Option B delivers same performance as Option A
with 4x less power … provided software can be
decomposed to run in parallel !!

2
Source:
https://wiki.rice.edu/confluence/download/attachments/4435861/comp322-s16-lec1-
slides.pdf?version=1&modificationDate=1452732285045&api=v2

Floating Point Operations per Second
(FLOPS)

• Measure of computer performance in
scientific computing

• FLOPS = (Total Cores) x (Clock) x (FLOPS per cycle)

3
© Vivek Kumar

Concurrency v/s Parallelism

• Concurrency
– Refers to tasks that appear to be running simultaneously,

but which may, in fact, actually be running serially
– “Dealing” with lots of things together

• Parallelism
– Refers to concurrent tasks that actually run at the same

time
– Always implies multiple processors
– Parallel tasks always run concurrently, but not all

concurrent tasks are parallel
– “Doing” lots of things at once

4
© Vivek Kumar

Task Decomposition for Parallel
Programming

• Granularity = task size
– depends on the number of tasks

• Fine-grain = large number of tasks
• Coarse-grain = small number of tasks
• Granularity examples for dense matrix-vector multiply
– fine-grain: each task represents an individual element in y
– coarser-grain: each task computes 3 elements in y

5

Task Decomposition Techniques

How should one decompose a task into various subtasks?

• No single universal recipe
• In practice, a variety of techniques are used

including
– Recursive decomposition
– Data decomposition

6
© Vivek Kumar

Task Decomposition Techniques

How should one decompose a task into various subtasks?

• No single universal recipe
• In practice, a variety of techniques are used

including
– Recursive decomposition
– Data decomposition
– Exploratory decomposition
– Speculative decomposition

7

Static v/s Dynamic
mapping??

Concurrency Platforms
A concurrency platform
should provide:

§ an interface for specifying
the logical parallelism
of the computation;

§ a runtime layer to
automate scheduling
and synchronization; and

§ guarantees of
performance and resource
utilization competitive
with hand-tuned code.

linguistic interface

compiler

runtime

user application

operating system

hardware

tools

Concurrency
Platform

Source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec01_intro.pdf
8

9

Computation Graph
finish { // F1

async A;
 finish { // F2

async B1;
async B2;

} // F2
B3;

} // F1

Key idea: If two statements, X and Y,
have no path of directed edges from
one to the other, then they can run in
parallel with each other.

Source:
https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec2-
slides-v1.pdf?version=1&modificationDate=1483206145211&api=v2

Async and Finish Statements for Task
Creation and Termination & Data Races

Read global_varA

Write global_varA

Read global_varA

Read global_varA

Ideal Parallelism
• Define ideal parallelism of

Computation G Graph as the
ratio, WORK(G)/CPL(G)

• Ideal Parallelism only depends
on the computation graph, and
is the speedup that you can
obtain with an unbounded
number of processors

10

Example:
WORK(G) = 26
CPL(G) = 11
Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36

Source:
https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec2-
slides-v1.pdf?version=1&modificationDate=1483206145211&api=v2

Greedy Schedule

• A greedy schedule is one that never forces a
processor to be idle when one or more nodes are
ready for execution

• A node is ready for execution if all its
predecessors have been executed

• Observations
– T1 = WORK(G), for all greedy schedules
– T∞ = CPL(G), for all greedy schedules

• where TP = execution time of a schedule for
computation graph G on P processors

11Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-
s16-lec3-slides-v1.pdf?version=1&modificationDate=1483206145596&api=v2

Bounds on Execution Time of Greedy
Schedules

• Let TP = execution time of a schedule for computation
graph G on P processors
– Can be different for different schedules

• Lower bounds for all greedy schedules
– Capacity bound: TP ≥ WORK(G)/P
– Critical path bound: TP ≥ CPL(G)
– Putting them together

• TP ≥ max(WORK(G)/P, CPL(G))

• Upper bounds for all greedy schedules
– Theorem [Graham ’66]. Any greedy scheduler achieves

• TP ≤ WORK(G)/P + CPL(G)

12Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-
s16-lec3-slides-v1.pdf?version=1&modificationDate=1483206145596&api=v2

Greedy Scheduling using Thread Pool

13

• Task scheduling paradigms
– Work-sharing scheduling
– Work-stealing scheduling

© Vivek Kumar

Work-Sharing v/s Work-Stealing

14
© Vivek Kumar

• Work-sharing
– Busy worker re-distributes the task eagerly
– Easy implementation through global task

pool
– Access to the global pool needs to be

synchronized: scalability bottleneck

• Work-stealing
– Busy worker pays little overhead to enable

stealing
• A lock is required for pop and steal only in case

single task remaining on deque
– Distributed task pools

• Idle worker steals the tasks from busy workers
– Better scalability

Types of Work-Stealing

15

1. finish {
2. async S1;
3. //continuation of S1
4. async S2;
5. //continuation of S2
6. S3;
7. }

start_finish();
push_task_to_runtime(Line_3);
S1;
if(Line_3_stolen) return;
push_task_to_runtime(Line_5);
S2;
if(Line_5_stolen) return;
S3;
end_finish();

start_finish();
push_task_to_runtime(S1);
push_task_to_runtime(S2);
S3;
end_finish();

Work-first

Help-first

Source: Work-first and help-first scheduling policies for async-finish task parallelism, Guo et. al., IPDPS 2009

With single worker, program execution using
work-first policy is similar to serial execution

© Vivek Kumar

FORASYNC_MODE_FLAT
void foo() {
 loop_domain_t loop = {0, 8, 1, 1};
 finish([&]() {
 forasync1D (&loop, [=](int i) {
 S(i); // can execute in parallel for all i
 }, MODE);
 });
}

MODE= FORASYNC_MODE_FLAT
Work = O(n)
CPL = O(n)

Source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec02_parallelism.pdf

MODE= FORASYNC_MODE_RECURSIVE
Work = O(n)

CPL = O(log n)

16

False Sharing due to Cache Coherency

17

False sharing occurs when threads on different processors modify variables
that reside on the same cache line. This invalidates the cache line and forces
a memory update to maintain cache coherency

17

Properties of a Good Locking Algorithm

• Mutual exclusion
• Deadlock freedom: system as a whole makes

progress.
If some thread calls lock() and never returns,
then other threads must complete lock() and
unlock() calls infinitely often.

• Starvation freedom: individual thread makes
progress. (This implies deadlock freedom.)
If some thread calls lock(), it will eventually
return.

Acknowledgement: Slides adopted from the companion slides for the book "The Art of Multiprocessor Programming” by
Maurice Herlihy and Nir Shavit

18

Object Based Isolation

19

 isolated(obj1, obj2, …, lambda_function)
• In this case, programmer specifies list of

objects for which isolation is required
• Mutual exclusion is only guaranteed for

instances of isolated constructs that have a
common object in their object lists
– Standard isolated is equivalent to “isolated(*)” by

default i.e., isolation across all objects

© Vivek Kumar

Pros and Cons of Object Based Isolation

20

• Pros
– Increases parallelism relative to critical section

approach
– Simpler approach than “locks”
– Deadlock-freedom property is still guaranteed

• Cons
– Programmer needs to worry about getting the

object list right

Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec20-slides-
v1.key.pdf?version=1&modificationDate=1483206145246&api=v2

• Mid semester exam

