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CSE502: Foundations of Parallel Programming



Multicores Saves Power

• Nowadays (post Dennard Scaling), power is 
proportional to (Frequency)3 

• Baseline example: single 1GHz core with power P 
– Option A: Increase clock frequency to 2GHz

• Power = 8P 
– Option B: Use 2 cores at 1 GHz each

• Power = 2P 

• Option B delivers same performance as Option A 
with 4x less power … provided software can be 
decomposed to run in parallel !!

2
Source: 
https://wiki.rice.edu/confluence/download/attachments/4435861/comp322-s16-lec1-
slides.pdf?version=1&modificationDate=1452732285045&api=v2



Floating Point Operations per Second 
(FLOPS)

• Measure of computer performance in 
scientific computing

• FLOPS = (Total Cores) x (Clock) x (FLOPS per cycle)
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Concurrency v/s Parallelism

• Concurrency
– Refers to tasks that appear to be running simultaneously, 

but which may, in fact, actually be running serially
– “Dealing” with lots of things together

• Parallelism
–  Refers to concurrent tasks that actually run at the same 

time
– Always implies multiple processors
– Parallel tasks always run concurrently, but not all 

concurrent tasks are parallel
– “Doing” lots of things at once
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Task Decomposition for Parallel 
Programming

• Granularity = task size
– depends on the number of tasks

• Fine-grain = large number of tasks 
• Coarse-grain = small number of tasks 
• Granularity examples for dense matrix-vector multiply
– fine-grain: each task represents an individual element in y 
– coarser-grain: each task computes 3 elements in y
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Task Decomposition Techniques

How should one decompose a task into various subtasks? 

• No single universal recipe
• In practice, a variety of techniques are used 

including
– Recursive decomposition 
– Data decomposition 
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Task Decomposition Techniques

How should one decompose a task into various subtasks? 

• No single universal recipe
• In practice, a variety of techniques are used 

including
– Recursive decomposition 
– Data decomposition 
– Exploratory decomposition 
– Speculative decomposition 
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Static v/s Dynamic 
mapping??



Concurrency Platforms
A concurrency platform 
should provide:  

§ an interface for specifying 
the logical parallelism 
of the computation;

§ a runtime layer to
automate scheduling 
and synchronization; and

§ guarantees of 
performance and resource 
utilization competitive 
with hand-tuned code. 

linguistic interface

compiler

runtime

user application

operating system

hardware

tools

Concurrency
Platform

Source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec01_intro.pdf
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Computation Graph
finish {    // F1

async A;
    finish {   // F2

async B1; 
async B2;

} // F2
B3;

} // F1

Key idea: If two statements, X and Y, 
have no path of directed edges from
one to the other, then they can run in
parallel with each other.

Source: 
https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec2-
slides-v1.pdf?version=1&modificationDate=1483206145211&api=v2

Async and Finish Statements for Task 
Creation and Termination & Data Races

Read global_varA

Write global_varA

Read global_varA

Read global_varA



Ideal Parallelism
• Define ideal parallelism of 

Computation G Graph as the 
ratio, WORK(G)/CPL(G)

• Ideal Parallelism only depends 
on the computation graph, and 
is the speedup that you can 
obtain with an unbounded 
number of processors
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Example:
WORK(G) = 26
CPL(G) = 11
Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36

Source: 
https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec2-
slides-v1.pdf?version=1&modificationDate=1483206145211&api=v2



Greedy Schedule

•  A greedy schedule is one that never forces a 
processor to be idle when one or more nodes are 
ready for execution 

• A node is ready for execution if all its 
predecessors have been executed

•  Observations
– T1 = WORK(G), for all greedy schedules
– T∞ = CPL(G), for all greedy schedules

• where TP = execution time of a schedule for 
computation graph G on P processors

11Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-
s16-lec3-slides-v1.pdf?version=1&modificationDate=1483206145596&api=v2



Bounds on Execution Time of Greedy 
Schedules

• Let TP = execution time of a schedule for computation 
graph G on P processors
– Can be different for different schedules

• Lower bounds for all greedy schedules
– Capacity bound: TP  ≥ WORK(G)/P
– Critical path bound: TP  ≥ CPL(G)
– Putting them together

• TP  ≥ max(WORK(G)/P, CPL(G))

• Upper bounds for all greedy schedules
– Theorem [Graham ’66]. Any greedy scheduler achieves

• TP ≤ WORK(G)/P + CPL(G)

12Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-
s16-lec3-slides-v1.pdf?version=1&modificationDate=1483206145596&api=v2



Greedy Scheduling using Thread Pool

13

• Task scheduling paradigms
– Work-sharing scheduling
– Work-stealing scheduling
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Work-Sharing v/s Work-Stealing
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• Work-sharing
– Busy worker re-distributes the task eagerly 
– Easy implementation through global task 

pool 
– Access to the global pool needs to be 

synchronized: scalability bottleneck

• Work-stealing
– Busy worker pays little overhead to enable 

stealing
• A lock is required for pop and steal only in case 

single task remaining on deque 
– Distributed task pools

• Idle worker steals the tasks from busy workers
– Better scalability



Types of Work-Stealing 
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1. finish {
2.    async S1;
3.    //continuation of S1
4.    async S2;
5.    //continuation of S2
6.    S3;
7. }

start_finish();
push_task_to_runtime(Line_3);
S1;
if(Line_3_stolen) return;
push_task_to_runtime(Line_5);
S2;
if(Line_5_stolen) return;
S3;
end_finish();

start_finish();
push_task_to_runtime(S1);
push_task_to_runtime(S2);
S3;
end_finish();

Work-first

Help-first

Source: Work-first and help-first scheduling policies for async-finish task parallelism, Guo et. al., IPDPS 2009

With single worker, program execution using 
work-first policy is similar to serial execution
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FORASYNC_MODE_FLAT
void foo() {
  loop_domain_t loop = {0, 8, 1, 1}; 
  finish([&]() {
    forasync1D (&loop, [=](int i) { 
      S(i); // can execute in parallel for all i  
    }, MODE);
  });
}

MODE= FORASYNC_MODE_FLAT 
Work = O(n)
CPL = O(n)

Source: http://classes.engineering.wustl.edu/cse539/web/lectures/lec02_parallelism.pdf

MODE= FORASYNC_MODE_RECURSIVE 
Work = O(n)

CPL = O(log n)
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False Sharing due to Cache Coherency
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False sharing occurs when threads on different processors modify variables 
that reside on the same cache line. This invalidates the cache line and forces 
a memory update to maintain cache coherency
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Properties of a Good Locking Algorithm

• Mutual exclusion
• Deadlock freedom: system as a whole makes 

progress.  
If some thread calls lock() and never returns, 
then other threads must complete lock() and 
unlock() calls infinitely often.

• Starvation freedom: individual thread makes 
progress. (This implies deadlock freedom.)
If some thread calls lock(), it will eventually 
return.  

Acknowledgement: Slides adopted from the companion slides for the book  "The Art of Multiprocessor Programming” by 
Maurice Herlihy and Nir Shavit

18



Object Based Isolation
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 isolated(obj1, obj2, …, lambda_function)
• In this case, programmer specifies list of 

objects for which isolation is required
• Mutual exclusion is only guaranteed for 

instances of isolated constructs that have a 
common object in their object lists
– Standard isolated is equivalent to “isolated(*)” by 

default i.e., isolation across all objects
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Pros and Cons of Object Based Isolation
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• Pros
– Increases parallelism relative to critical section 

approach
– Simpler approach than “locks”
– Deadlock-freedom property is still guaranteed

• Cons
– Programmer needs to worry about getting the 

object list right

Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec20-slides-
v1.key.pdf?version=1&modificationDate=1483206145246&api=v2



• Mid semester exam


