
Lecture 13: Task Affinity with
Hierarchical Place Trees

Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE502: Foundations of Parallel Programming

Today’s Class

4

• Task affinity with Hierarchical Place Trees
(HPT)

Locality

5

• Principal of Locality
– Empirical observation: Processors tend to access same

set or nearby memory locations repetitively over a
short period of time

• Temporal locality:
– Recently referenced items are likely to be referenced

again in the near future

• Spatial locality:
– Items with nearby addresses tend to be referenced

close together in time
Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec32-slides-
v1.pdf?version=1&modificationDate=1483206145705&api=v2

Locality Example

6

• Data references
– Reference array elements in succession

(stride-1 reference pattern)
– Reference variable sum each iteration

• Instruction references
– Reference instructions in sequence
– Cycle through loop repeatedly

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality

Temporal locality

Spatial locality

Temporal locality

Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec32-slides-
v1.pdf?version=1&modificationDate=1483206145705&api=v2

Iterative Averaging with Places –
Sequential Version

7

https://classes.engineering.wustl.edu/cse231/core/index.php/Iterative_Averaging
Code available on github: https://github.com/vivkumar/cse502/blob/master/hclib/test/lec10/

double A[SIZE+2], A_shadow[SIZE+2];

void runSequential() {
 for (uint64_t iter=0; iter<ITERATIONS; iter++) {
 for (uint64_t j=1; j<=SIZE; j++) {
 A_shadow[j] = (A[j–1] + A[j+1])/2.0;
 }
 double* temp = A_shadow;
 A_shadow = A;
 A = temp;
 }
}

© Vivek Kumar

https://classes.engineering.wustl.edu/cse231/core/index.php/Iterative_Averaging

Iterative Averaging with Places –
async-finish Version

8Code available on github: https://github.com/vivkumar/cse502/blob/master/hclib/test/lec10/

double A[SIZE+2], A_shadow[SIZE+2];

void runAsyncFinish() {
 int chunkSize = SIZE / num_workers();
 for (uint64_t iter=0; iter<ITERATIONS; iter++) {
 finish([=]() {
 for (uint64_t i=0; i<num_workers(); i++) {
 async([=]() {
 int start = i * chunkSize + 1;
 int end = start + chunkSize – 1;
 for (uint64_t j=start; j<=end; j++) {
 A_shadow[j] = (A[j–1] + A[j+1])/2.0;
 }
 });
 }
 });
 double* temp = A_shadow;
 A_shadow = A;
 A = temp;
 }
}

© Vivek Kumar

Does it provide
better locality?

Analyzing Locality Iterative Averaging

9Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec32-slides-
v1.pdf?version=1&modificationDate=1483206145705&api=v2

Memory Hierarchy in a Multicore
Processor

10

Memory hierarchy for a single Intel Xeon (Nehalem) Quad-core
processor chip

Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec32-slides-
v1.pdf?version=1&modificationDate=1483206145705&api=v2

Programmer Control of Task
Assignment to Processors

11

• The parallel programming constructs that we’ve
studied thus far result in tasks that are assigned
to processors dynamically by the HClib runtime
system
– Programmer does not worry about task assignment

details
• Sometimes, programmer control of task

assignment can lead to significant performance
advantages due to improved locality

• Motivation for HClib “places”
– Provide the programmer a mechanism to restrict task

execution to a subset of processors for improved
locality

Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec32-slides-
v1.pdf?version=1&modificationDate=1483206145705&api=v2

Task Affinity

12

• This is a programming feature provided to the
programmer by which he can control the
placement of the async tasks in different levels
of memory hierarchy
– Notion of “place” introduced by X10 language
– Shared memory
• Habanero-C and Habanero-Java
• OpenMP does not support this yet but it will be coming

up in the near future
– Distributed memory
• X10, Chapel, UPC++, HabaneroUPC++

© Vivek Kumar

Hierarchical Place Trees in HClib

13

§ Abstraction of the memory hierarchy that a HClib
program is executed on (using XML document)

§ Place denoting affinity group at memory
hierarchy level
§ E.g., L1 cache, L2 cache, DRAM

§ Leaf places include worker threads
§ E.g., W0, W1, W2, W3

§ Workers can push task to any place
 asyncAtHpt(place*, lambda_function)

© Vivek Kumar

Example: HPT for a Quad Core Processor

14

Three different HPTs
possible on this quad

core processor

Places in HClib

15

Some basic APIs in HClib for HPTs

place_t* get_current_place() //place at which current task is executing
int get_num_places(place_type_t type) //total number of places
 // (runtime constant)
– type = CACHE_PLACE or MEM_PLACE (accelerator places

coming up)
place_t* get_places(places_array, place_type_t type) //array of all

 // places of “type”
asyncAtHpt(place_t*, S) //Creates new task to
//execute statement S at place P

© Vivek Kumar

A Sample HPT File

16

<?xml version="1.0"?>
<!DOCTYPE HPT SYSTEM "hpt.dtd">

<HPT version="0.1" info="HPT test">
 <place num="1" type="mem">
 <place num="2" type="cache">
 <worker num="1"/>
 </place>
 </place>
</HPT>

© Vivek Kumar

Iterative Averaging with Places –
HPT Version

17

double A[SIZE+2], A_shadow[SIZE+2];

void runOnHPT() {
 int numPlaces = get_num_places(place_type_t::CACHE_PLACE);
 place_t** cachePlaces = malloc(sizeof(place_t*) * numPlaces);
 get_places(cachePlaces, place_type_t::CACHE_PLACE);
 int chunkSize = SIZE / numPlaces;
 for (uint64_t iter=0; iter<ITERATIONS; iter++) {
 finish([=]() {
 for (uint64_t i=0; i<num_workers(); i++) {
 asyncAtHpt(cachePlace[i], [=]() {
 int start = i * chunkSize + 1;
 int end = start + chunkSize – 1;
 for (uint64_t j=start; j<=end; j++) {
 A_shadow[j] = (A[j–1] + A[j+1])/2.0;
 }
 });
 }
 });
 double* temp = A_shadow;
 A_shadow = A;
 A = temp;
 }
 free(cachePlaces);
}

Co
de

 a
va

ila
bl

e
on

 g
ith

ub
: h

tt
ps

:/
/g

ith
ub

.c
om

/v
iv

ku
m

ar
/c

se
50

2/
bl

ob
/m

as
te

r/
hc

lib
/t

es
t/

le
c1

0/

© Vivek Kumar

Analyzing Locality of Fork-Join Iterative
Averaging Example with Places

18Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec32-slides-
v1.pdf?version=1&modificationDate=1483206145705&api=v2

Performance Analysis of 1D Iterative
Averaging with/without HPT

19
5.5

6

6.5

7

Without_HPT
With_HPT

Speedup obtained with
24 threads over the
sequential version

Dual socket 6 core Intel E5-2667 processor with hyperthreading. Array size 3MB and total iterations=100
© Vivek Kumar

Starting an Async at Non Leaf HPT Node?

20

asyncAtHpt(P7, S1); asyncAtHpt(P9, S2); asyncAtHpt(P12, S3); asyncAtHpt(P14, S4);
asyncAtHpt(P2, S5);
asyncAtHpt(P4, S6);
asyncAtHpt(P6, S7);
asyncAtHpt(P0, S8);

Example HPT:
- 2 sockets with shared L3
- 2 shared L2 per socket

Picture credit: Runtime Systems for Extreme Scale Platforms, PhD thesis, Sanjay Chatterjee, Rice University, 2013
© Vivek Kumar

Work-Stealing in a HPT

21

•Workers attach to (own) leaf places
• Each place has one queue per worker

• Ensures non-synchronized push and pop
• Any worker can push a task at any place
• Pop / steal access permitted to subtree workers
• Workers traverse path from leaf to root
• Tries to pop, then steal, at every place
• After successful pop / steal worker returns to leaf
• Worker threads are bound to cores

Example HPT:
- 2 sockets with shared L3
- 2 shared L2 per socket

push / pop
asyncAtHpt (p3, task)

Picture credit: Runtime Systems for Extreme Scale Platforms, PhD thesis, Sanjay Chatterjee, Rice University, 2013

Next Class (Tomorrow)

• Promises, futures, and data driven tasks

22

Reading Material

• Hierarchical Place Trees: a Portable
Abstraction for Task Parallelism and Data
Movement, Yan et. al., LCPC 2009
– http://www.cs.rice.edu/~vs3/PDF/hpt.pdf

23

Acknowledgements
• Several of the slides used in this course are borrowed

from the following online course materials:
– Course COMP322, Prof. Vivek Sarkar, Rice University
– Course COMP 422, Prof. John Mellor-Crummey, Rice

University
– Course CSE539S, Prof. I-Ting Angelina Lee, Washington

University in St. Louis
• Contents are also borrowed from following sources:
– “Introduction to Parallel Computing” by Ananth Grama,

Anshul Gupta, George Karypis, and Vipin Kumar. Addison
Wesley, 2003

– https://computing.llnl.gov/tutorials/parallel_comp/
– https://images.google.com/

https://computing.llnl.gov/tutorials/parallel_comp/
https://images.google.com/

