
Lecture 15: Cilk Language & Runtime

Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE502: Foundations of Parallel Programming

Last Class A

B C

D E

F

Today’s Lecture

• Parallel programming using Cilk
– spawn & sync
– inlet & abort

• These interesting features are only available in MIT Cilk-
5.4.6, and not in Intel Cilk Plus. Hence, we would use MIT
Cilk-5.4.6 for this lecture

– Mutual exclusion

© Vivek Kumar 3

Lecture-14 completed Part-1: Parallel programming in shared
memory using Habanero-C library (HClib)

Acknowledgements: Habanero Team Members, Rice University

4

• We will use MIT Cilk-5.4.6 for this lecture, as it supports inlet & abort
– Download: http://supertech.lcs.mit.edu/cilk/cilk-5.4.6.tar.gz
– Installation

• cd cilk-5.4.6
• ./configure --prefix=/absolute path/install-directory
• make install (tested with gcc-4.9)

– Run tests
• export PATH=/absolute path/install-directory/bin:$PATH
• cd example
• cilkc -D_XOPEN_SOURCE=600 -D_POSIX_C_SOURCE=200809L fib.cilk -o fib
• ./fib --nproc <number of workers>

http://supertech.lcs.mit.edu/cilk/cilk-5.4.6.tar.gz

Introducing Cilk

5

cilk uint64_t fib(uint64_t n) {
 if (n < 2) {
 return n;
 } else {
 uint64_t x, y;
 x = spawn fib(n-1);
 y = spawn fib(n-2);
 sync;
 return (x + y);
 }
}
cilk int main(int argc, char** argv) {
 int result = spawn fib(40);
 sync;
}

Identifies a function
as a Cilk procedure,

capable of being
spawned in parallel The named Child

procedure can execute in
parallel with the parent

caller

Control cannot pass this
point until all spawned
children have returned

spawn keyword can only be
applied to a Cilk function, and
cannot be used in a C function

Cilk function cannot be called
as normal C function, and

must be called with spawn &
waited for by a sync

Cilk is a faithful
extension of C, i.e., it
supports serial elision

Cilk’s spawn-sync v/s HClib’s async-finish

• What is a “strict” computation?
– A strict computation is one in which all join edges

from a task go to one of its ancestor tasks in the
computation graph

Cilk’s
spawn-sync

HClib’s
async-finish

6

Fully-strict v/s Terminally-strict

7

cilk void compute(Node* node) {
 int i;
 process(node); //sequential
 for(i=0; i<node->numChild; i++) {
 spawn compute(node->child[i]);
 }
 sync;
}
cilk void DFS(Node* root) {
 spawn compute(root);
 sync;
}

void compute(Node* node) {
 int i;
 process(node); //sequential
 for(i=0; i<node->numChild; i++) {
 async compute(node->child[i]);
 }

}
void DFS(Node* root) {
 finish compute(root);
}

Cilk HClib

Escaping async
–> a child can

outlive its parent,
i.e. avoiding
unnecessary

synchronization

Sequential
call to

parallel
function

Cilk Scheduler

• Uses work-first work-stealing runtime

8

cilk void foo() {
 for (uint64_t i=0; i<SIZE; i++) {
 spawn S(i); // can execute in parallel for all i
 }
 sync;
}

Loop runs perfectly fine,
without any risk of

blowing out memory,
Why?

The Cactus Stack Abstraction
• Cilk runtime maintains cactus stack abstraction so

that each worker has the complete stack similar
to sequential execution
– Supports C’s rules for pointers

• A pointer to stack variable can be passed from parent to
child, but not from child to parent

9

Lack of Serial-Parallel Reciprocity
• Recall

– Cilk functions must be spawned,
not called

– C functions must be called, not
spawned

– Compilation error if above two
rules are not followed

10

cilk void A() {
 spawn foo();
 spawn E();
 sync;
}
void foo() {
 B();
}
cilk void B() {
 spawn C();
 spawn D();
 sync;
}

W1 after returning from C realizes
that B has been stolen. As it is a

work-first work-stealing, W1
should discard all the frames on

its stack before attempting a steal.
However, it cannot discard frame

foo as it isn’t a cilk function

Parallelizing Vector Addition

11

C

Parallelizing Vector Addition

• Parallelization strategy:
1. Convert loops to recursion

12

C

C

Parallelizing Vector Addition

• Parallelization strategy:
1. Convert loops to recursion
2. Insert Cilk keywords

13

C

Cilk

cilk

spawn
spawn sync;

Parallelizing Vector Addition

14

Would this CG change when using HClib’s
forasync1D with mode recursive?

Today’s Lecture

• Parallel programming using Cilk
– spawn & sync
– inlet
– abort
– Mutual exclusion

© Vivek Kumar 15

Operating on Returned Values

• Programmers may wish to operate on a return
value without waiting on a sync

• Cilk achieves this functionality by using an
internal function, called an inlet, which can be
viewed as an “event handler” task executed by
the parent when the child returns

16

Semantics of inlet

• The inlet keyword defines a void internal function to be an
inlet

• inlet function cannot contain a spawn
• Only the first argument of the inlet may be spawned at the

call site
• Only one inlet per cilk function

17

val > max

Semantics of inlet

18

1. The non-spawn args to update() are evaluated
2. The Cilk procedure foo(i) is spawned
3. Control passes to the next statement
4. When foo(i) returns, update() is invoked

val > max

Semantics of inlet (Fib with inlet)

19

cilk uint64_t fib(uint64_t n) {
 uint64_t x = 0;
 inlet void summer(uint64_t result) {
 x += result;
 return;
 }
 if(n<2) {
 return n;
 } else {
 summer(spawn fib(n-1));
 summer(spawn fib(n-2));
 sync;
 return x;
 }
}

Notice there is no data-race on addition inside inlet. Cilk
guarantees that tasks from a function instance, including
inlets, operate atomically with respect to one another

No data race
on local

variable x!

Question

20

cilk uint64_t fib(uint64_t n) {
 if(n<2) {
 return n;
 } else {
 uint64_t x = 0;
 x += spawn fib(n-1);
 x += spawn fib(n-2);
 sync;
 return x;
 }
}

Is there a data-
race now?

Implicit inlets
• For assignment operators, the Cilk compiler

automatically generates an implicit inlet to
perform the update
– Hence, no data race above!

Today’s Lecture

• Parallel programming using Cilk
– spawn & sync
– inlet
– abort
– Mutual exclusion

© Vivek Kumar 21

Computing a Product

22

Optimization: Quit early if the partial product
ever becomes 0

Computing a Product

23

Optimization: Quit early if the partial product
ever becomes 0

Computing a Product in Parallel

24

How do we quit early now once we discover a
zero?

Computing a Product in Parallel

25

1. Recode the implicit inlet to make it explicit

Computing a Product in Parallel using inlet & abort

26

1. Recode the implicit inlet to make it explicit

Computing a Product in Parallel using inlet & abort

27

1. Recode the implicit inlet to make it explicit
2. Check for 0 within the inlet

Computing a Product in Parallel using inlet & abort

28

1. Recode the implicit inlet to make it explicit
2. Check for 0 within the inlet

Computing a Product in Parallel using inlet & abort

29

Today’s Lecture

• Parallel programming using Cilk
– spawn & sync
– inlet
– abort
– Mutual exclusion

© Vivek Kumar 31

Mutual Exclusion

• Cilk’s solution to mutual exclusion is very
primitive

• It provides a library of spin locks declared with
Cilk_lockvar
– spawn/sync should not be called inside the critical

section

32

Next Lecture

• Introduction to OpenMP programming model
• Lab-3 & Lab-4 next week during lecture days
• No lectures next week

33

Reading Material

• Cilk-5.4.6 reference manual
– http://supertech.lcs.mit.edu/cilk/manual-5.4.6.pdf

http://supertech.lcs.mit.edu/cilk/manual-5.4.6.pdf

Acknowledgements

• Prof. Vivek Sarkar
– COMP422, Rice University

• Prof. I-Ting Angelina Lee
– CSE539, Washington University in St. Louis

35

