
Lecture 18: OpenMP Work-Sharing
Pragmas
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE502: Foundations of Parallel Programming

Last Class: Intro. to OpenMP Programming
#include “hclib_cpp.h”
main() {
 launch([&]() {
 finish ([=]() {
 async([=](){ printf(“Hello”\n”);});
 async([=](){ printf(“Hello”\n”);});
 });
 }); HClib
}

#include <omp.h>
main() {
 #pragma omp parallel num_threads(2)
 {
 printf(“Hello”\n”); OpenMP
 }
} /* OMP_NUM_THREADS=2 ./a.out */

#include <omp.h>
main() {
 do_sequential();
 #pragma omp parallel num_threads(4)
 printf(“Hello”\n”);
 do_sequential();
 #pragma omp parallel num_threads(6)
 printf(“Hello”\n”);
} /* OMP_NUM_THREADS=2 ./a.out */

Single Program Multiple Data
(SPMD)

num_threads has higher precedence
than OMP_NUM_THREADS /

omp_set_num_threads()

Today’s Class
• Work-sharing constructs in OpenMP (contd.)
– Data sharing modes

• Synchronization in OpenMP
Acknowledgements: Slides heavily borrowed from following two sources:
a) ECE563, Purdue University, Dr. Seung-Jai Min
b) COMP422, Rice University, Dr. Vivek Sarkar

3

4

5

6

OpenMP Clauses
#pragma omp parallel [clauses[[,] clauses] ...]
{
 “this is executed in parallel”
} (implied barrier)

if (scalar expression)
private (list)
shared (list)
default (none | shared)
reduction (operator : list)
firstprivate (list)
num_threads (scalar_integer_expression)

7

8

9

“Private” as these are used
as work-sharing loop
iterator variable, else

shared scope

Data Environment
• “default(none)”

– Best programming practice
– All local variables (including loop iterators) declared outside the

parallel region cannot be accessed inside the parallel region
without explicitly declaring the sharing mode
• Compilation error otherwise

• “default(shared)”
– All local variables declared outside the parallel region will be

shared among all the threads inside the parallel region
• “shared(var_a, var_b)”

– Local variables “var_a” and “var_b” are being shared among all the
threads inside the parallel region

• “firstprivate(var_a)”
– Same as “private” except that threads get a private copy of

“var_a” initialized with the last known value for this variable just
before the start of parallel region

10

11

12

Do you see any
issues here?

13

14

15

OpenMP Sections

16

17

Only scalar types. For user defined
reductions, you have to use another

pragma supported in OpenMP 4.0. We
will not cover it in this course

18

275 206 109 100 100 100 100 100 10
No fixed mapping between threads and chunks

No fixed mapping between threads and chunks

Schedule
• static

– Loop iterations are divided into pieces of size chunk and then statically
assigned to threads. If chunk is not specified, the iterations are evenly (if
possible) divided contiguously among the threads

• dynamic
– Loop iterations are divided into pieces of size chunk, and dynamically

scheduled among the threads; when a thread finishes one chunk, it is
dynamically assigned another. The default chunk size is 1

• guided
– Similar to “dynamic” except that the block size decreases each time a

parcel of work is given to a thread. The size of the initial block is
proportional to “number_of_iterations/numThreads”. Subsequent blocks
are proportional to “number_of_iterations_remaining/numWorkers”

• auto
– The scheduling decision is delegated to the compiler and/or runtime

system

19

20

OpenMP Library Functions

• In addition to directives, OpenMP also supports a
number of functions that allow a programmer to
control the execution of threaded programs

 /* thread and processor count */
 void omp_set_num_threads(int num_threads);
 int omp_get_num_threads();
 int omp_get_thread_num();
 int omp_get_num_procs();
 int omp_in_parallel();

21

Synchronization in OpenMP

• Implicit barriers
• #pragma omp barrier
• #pragma omp critical
• Simple locks and nested locks
• Few more techniques that are out of scope of

this course (atomic, flush, and ordered)

23

24

Next Class

• Tasks based parallelism in OpenMP
• Lab-5 next week (Monday)
– Syllabus: Lectures 17-18

• Quiz-4 on Thursday in lecture slot
– Syllabus: Lectures 17-19 (OpenMP)

26

Reading Material

• OpenMP tutorial from LLNL
– https://computing.llnl.gov/tutorials/openMP/

27

