
1
1

Lecture 19: Tasks-based Parallelism in
OpenMP

Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE502: Foundations of Parallel
Programming

2

Last Class: work-sharing constructs in
OpenMP

Today’s Class

3

Acknowledgement: All the slides that appear in this lecture is
adapted from the tutorial “Programming Irregular Applications
with OpenMP” that was given at SC 2016 (Salt Lake City,
Utah). Presenters of this tutorial were Dr. Tim Mattson, Dr.
Alice Koniges, Dr. Clay Breshears, and Dr. Jeremy Kemp

Outline

• Explicit Tasks in OpenMP
• Data sharing across tasks

4

5

Not all programs have simple loops OpenMP
can parallelize

• Consider a program to traverse a linked list:

p=head;
 while (p) {
 processwork(p);
 p = p->next;
 }

• OpenMP can only parallelize loops in a basic standard form
with loop counts known at runtime

Can you use work-sharing pragmas
to parallelize this program??

6

Linked lists with parallel loops

while (p != NULL) {
 p = p->next;
 count++;
 }
 p = head;
 for(i=0; i<count; i++) {
 parr[i] = p;
 p = p->next;
 }
 #pragma omp parallel
 {
 #pragma omp for schedule(dynamic,1)
 for(i=0; i<count; i++)
 processwork(parr[i]);
 }

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Why “dynamic” schedule?

7

Linked lists with parallel loops

while (p != NULL) {
 p = p->next;
 count++;
 }
 p = head;
 for(i=0; i<count; i++) {
 parr[i] = p;
 p = p->next;
 }
 #pragma omp parallel
 {
 #pragma omp for schedule(dynamic,1)
 for(i=0; i<count; i++)
 processwork(parr[i]);
 }

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

There has got to be a better way!!!

What are tasks?

• Tasks are independent units of work
• Tasks are composed of:
– code to execute
– data to compute with

• Threads are assigned to perform the
work of each task.
– The thread that encounters the task construct

may execute the task immediately.
– The threads may defer execution until later Serial Parallel

Lambda in
async?

push_task_to_runtime() ?

What are tasks?

• The task construct includes a structured
block of code

• Inside a parallel region, a thread
encountering a task construct will
package up the code block and its data
for execution

• Tasks can be nested: i.e. a task may
itself generate tasks.
– HClib async ? Serial Parallel

Task Directive

#pragma omp parallel
{
 #pragma omp master
 {
 #pragma omp task
 fred();
 #pragma omp task
 daisy();
 #pragma omp task
 billy();
 }
}

Thread 0 packages
tasks

Create some threads

Tasks executed by
some thread in some
order

All tasks complete before this barrier is released

#pragma omp task [clauses]
 structured-block

Task Directive

11

12

When/where are tasks complete?

• At thread barriers (explicit or implicit)
– C/C++: #pragma omp barrier
– All tasks created by any thread of the current team are guranteed to be

completed at barrier exit

• At taskwait directive
– i.e. Wait until all tasks defined in the current task have completed.
– C/C++: #pragma omp taskwait

– Note: applies only to tasks generated in the current task, not to
“descendants” .
– The code executed by a thread in a parallel region is considered a task

here

HClib’s finish{ } ?

Example

13

#pragma omp parallel
{
 #pragma omp master
 {
 #pragma omp task
 fred();
 #pragma omp task
 daisy();
 #pragma omp taskwait
 #pragma omp task
 billy();
 }
}

fred() and daisy()
must complete before
billy() starts

Can we have?
#pragma omp single

Yes, but “single” has
an implicit barrier
unlike “master”

Data scoping with tasks
• Variables can be shared, private or firstprivate with respect to

task
• These concepts are a little bit different compared with

threads:
– If a variable is shared on a task construct, the references to it inside

the construct are to the storage with that name at the point where the
task was encountered
– If a variable is private on a task construct, the references to it inside

the construct are to new uninitialized storage that is created when the
task is executed
– If a variable is firstprivate on a construct, the references to it inside the

construct are to new storage that is created and initialized with the
value of the existing storage of that name when the task is
encountered

14

15

Data scoping defaults
• The behavior you want for tasks is usually firstprivate, because the task

may not be executed until later (and variables may have gone out of
scope)

– Variables that are private when the task construct is encountered are firstprivate by
default

• Variables that are shared in all constructs starting from the innermost
enclosing parallel construct are shared by default

#pragma omp parallel shared(A) private(B)
{
 ...
#pragma omp task
 {
 int C;
 compute(A, B, C);
 }
}

A is shared
B is firstprivate
C is private

16

Data scoping defaults (1/6)

int a=1, b=2;
#pragma omp parallel default(none)
{
 int c=3;
 #pragma omp task
 {
 printf(“IN: a=%d, b=%d, c=%d\n”,a++,b++,c++);
 }
 #pragma omp taskwait
 printf(“OUT: c=%d\n”,c);
}
printf(“OUT: a=%d, b=%d\n”,a,b);

What will be output ? (OMP_NUM_THREADS=1)
>>compilation error !!

Note: This is not from SC16 tutorial

Best Practice to
avoid unexpected
results !!

17

Data scoping defaults (2/6)

int a=1, b=2;
#pragma omp parallel default(none) shared(a,b)
{
 int c=3;
 #pragma omp task
 {
 printf(“IN: a=%d, b=%d, c=%d\n”,a++,b++,c++);
 }
 #pragma omp taskwait
 printf(“OUT: c=%d\n”,c);
}
printf(“OUT: a=%d, b=%d\n”,a,b);

What will be output ? (OMP_NUM_THREADS=1)
>> IN: a=1,b=2,c=3
>> OUT: c=3
>> OUT: a=2,b=3

Note: This is not from SC16 tutorial

Best Practice to
avoid unexpected
results !!

18

Data scoping defaults (3/6)

int a=1, b=2;
#pragma omp parallel default(none) private(a,b)
{
 int c=3;
 #pragma omp task
 {
 printf(“IN: a=%d, b=%d, c=%d\n”,a++,b++,c++);
 }
 #pragma omp taskwait
 printf(“OUT: c=%d\n”,c);
}
printf(“OUT: a=%d, b=%d\n”,a,b);

What will be output ? (OMP_NUM_THREADS=1)
>> IN: a=0,b=0,c=3
>> OUT: c=3
>> OUT: a=1,b=2

Note: This is not from SC16 tutorial

Best Practice to
avoid unexpected
results !!

19

Data scoping defaults (4/6)

int a=1, b=2;
#pragma omp parallel default(none) firstprivate(a,b)
{
 int c=3;
 #pragma omp task
 {
 printf(“IN: a=%d, b=%d, c=%d\n”,a++,b++,c++);
 }
 #pragma omp taskwait
 printf(“OUT: c=%d\n”,c);
}
printf(“OUT: a=%d, b=%d\n”,a,b);

What will be output ? (OMP_NUM_THREADS=1)
>> IN: a=1,b=2,c=3
>> OUT: c=3
>> OUT: a=1,b=2

Note: This is not from SC16 tutorial

Best Practice to
avoid unexpected
results !!

20

Data scoping defaults (5/6)

int a=1, b=2;
#pragma omp parallel default(none) shared(a) private(b)
{
 int c=3;
 #pragma omp task
 {
 printf(“IN: a=%d, b=%d, c=%d\n”,a++,b++,c++);
 }
 #pragma omp taskwait
 printf(“OUT: c=%d\n”,c);
}
printf(“OUT: a=%d, b=%d\n”,a,b);

What will be output ? (OMP_NUM_THREADS=1)
>> IN: a=1,b=0,c=3
>> OUT: c=3
>> OUT: a=2,b=2

Note: This is not from SC16 tutorial

Best Practice to
avoid unexpected
results !!

21

Data scoping defaults (6/6)

int a=1, b=2;
#pragma omp parallel default(none) shared(a) private(b)
{
 int c=3;
 b = 1;
 #pragma omp task
 {
 printf(“IN: a=%d, b=%d, c=%d\n”,a++,b++,c++);
 }
 #pragma omp taskwait
 printf(“OUT: c=%d,b=%d\n”,c,b);
}
printf(“OUT: a=%d, b=%d\n”,a,b);

What will be output ? (OMP_NUM_THREADS=1)
>> IN: a=1,b=1,c=3
>> OUT: c=3,b=1
>> OUT: a=2,b=2 Note: This is not from SC16 tutorial

Best Practice to
avoid unexpected
results !!

Example: Fibonacci numbers

int fib (int n)
{
 int x,y;
 if (n < 2) return n;

 x = fib(n-1);
 y = fib (n-2);
 return (x+y);
}

Int main()
{
 int NW = 40;
 fib(NW);
}

Which data sharing mode to
specify for each of the

variables in this example?

Parallel Fibonacci

23

int fib (int n)
{ int x,y;
 if (n < 2) return n;

#pragma omp task shared(x)
 x = fib(n-1);
#pragma omp task shared(y)
 y = fib (n-2);
#pragma omp taskwait
 return (x+y);
}

Int main()
{ int NW = 40;
 #pragma omp parallel
 {
 #pragma omp master
 fib(NW);
 }
}

You must specify “shared”
for “x” and “y”, as

otherwise they will become
“fristprivate” to tasks

24

Linked lists with tasks

#pragma omp parallel
{
 #pragma omp single
 {
 p=head;
 while (p) {
 #pragma omp task firstprivate(p)
 processwork(p);
 p = p->next;
 }
 }
}

Creates a task with its
own copy of “p”
initialized to the value
of “p” when the task is
defined

25

Thread 0:

p = listhead ;
while (p) {
< package up task >
 p=next (p) ;
}

while (tasks_to_do){
 < execute task >
}

< barrier >

Other threads:

while (tasks_to_do) {
< execute task >
}

< barrier >

Parallel linked list traversal

#pragma omp single
{
for (i=0; i<ONEZILLION; i++)
#pragma omp task
process(item[i]);

}

• Consider the following example ... Where the program may generate so
many tasks that the internal data structures managing tasks overflow.

26

Task switching

#pragma omp single
{
for (i=0; i<ONEZILLION; i++)
#pragma omp task untied
process(item[i]);

}

• Consider the following example ... Where the program may generate so
many tasks that the internal data structures managing tasks overflow.

27

Task switching

• Solution … Task switching; Threads can switch to other tasks at certain
points called thread scheduling points.

• With Task switching, a thread can
– Execute an already generated task … to “drain the task pool”
– Execute the encountered task immediately (instead of deferring task

execution for later)

if Clause

• If the expression of an if clause on a task evaluates
to false
–The encountering task is suspended
–The new task is executed immediately
–The parent task resumes when new tasks finishes
–Used for optimization, e.g. avoid creation of small tasks

28

#pragma omp task if(expr)

Next Class

• Introduction to distributed memory parallel programming
• Lab-6 on Saturday (Tuesday-TT)
– Syllabus: Today’s lecture

• Quiz-4 (Last remaining quiz)
– Syllabus: Lectures 17-19

29

