
Lecture 20: Introduction to Distributed
Memory Parallel Programming using the

Message Passing Interface

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE502: Foundations of Parallel Programming

Last Class

2

• Tasking constructs in OpenMP

Today’s Class

3

• Distributed memory parallel programming using
Message Passing Interface
– An introduction

• Quiz-4

Acknowledgements: Slides in this lecture are
adapted from COMP322 course at Rice University
and from the MPI tutorial available at LLNL website
(https://computing.llnl.gov/tutorials/mpi/)

Organization of a Distributed Memory Multiprocessor

5

Figure (a)
• Host node (Pc) connected to a cluster of

processor nodes (P0 … Pm)
• Processors P0 … Pm communicate via an

interconnection network
Figure (b)
• Each processor node consists of a processor,

memory, and a Network Interface Card (NIC)
connected to a router (R) in the interconnect

Comparing with HClib places: Each node is like a
“distributed place” with no sharing of memory

PBS sample jobscript
#!/bin/bash
#PBS –q <queue name>
#PBS –l <core count>
#PBS –l walltime=00:02:30
cd $PBS_O_WORKDIR
aprun –n <Processes> -N <process/node> -d <core/node> ./exe
>./output.log

$qsub <jobscript>
$qstat –f jobid

Message Passing Model Characteristics

6

Message Passing

Distributed Computing

Paired Communication

Data Distribution: Local View in
Distributed-Memory Systems

7

Message Passing for Distributed Memory
Multiprocessors

8

• The logical view of a machine supporting the message-
passing paradigm consists of p processes, each with its own
exclusive address space, that are capable of executing on
different nodes in a distributed-memory multiprocessor
1. Each data element must belong to one of the partitions of the

space; hence, data must be explicitly partitioned and placed.
2. All interactions (read-only or read/write) require cooperation

of two processes - the process that has the data and the
process that wants to access the data.

• These two constraints, while onerous, make underlying
costs very explicit to the programmer.

• In this loosely synchronous model, processes synchronize
infrequently to perform interactions. Between these
interactions, they execute completely asynchronously.

MPI: The Message Passing Interface

9

• MPI is a specification for the developers and
users of message passing libraries. By itself, it is
NOT a library - but rather the specification of
what such a library should be

• Reasons for using MPI
– Standardization

• Supported on almost every HPC platforms
– Portability

• Same code will even run on another platform
– Performance Optimization

• Vendors apply optimizations specific to their HPC platform
– Availability

• Both vendor specific as well as open-sourced

SPMD Pattern

10

• SPMD: Single Program Multiple Data
• Run the same program on P processing elements (PEs)
• Use the “rank” … an ID ranging from 0 to (P-1) … to

determine what computation is performed on what
data by a given PE

• Different PEs can follow different paths through the
same code

Process_1
(rank=0)

Process_2
(rank=1)

Process_3
(rank=2)

Process_4
(rank=3)

Modeling the SMPD Model

11

• Processors must communicate via messages
for non-local data accesses

How Big is MPI ?

12

• There are over 430+ routines defined in MPI-3
– Most MPI programs can be written using a dozen

or less routines

General MPI Program Structure

13

Our First MPI Program

14

// the header file containing MPI APIs
#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {
 // Initialize the MPI runtime
 MPI_Init(argc, argv);
 int rank, nprocs;
 // Get the total number of processes in MPI_COMM_WORLD
 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
 // Get the rank of this process in MPI_COMM_WORLD
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 printf(“My rank is %d in world of size %d\n”, rank, nprocs);
 // Terminate the MPI runtime
 MPI_Finalize();
 return 0;
}

MPI Communicators

15

• MPI uses objects called communicators and groups to define which
collection of processes may communicate with each other

• Most MPI routines require you to specify a communicator as an
argument

• Default communicator is MPI_COMM_WORLD
– All processes are its members
– It has a size (the number of processes)
– Each process has a rank within it
– Can think of it as an ordered list of processes

Next Lecture

• Point to point communications in MPI
• Lecture-21 on Saturday (Tuesday-TT)
• Lab-6 on Saturday in LHC - L321 from 2-3pm

16

Reading Material

• Tutorial on MPI by LLNL
– https://computing.llnl.gov/tutorials/mpi/

17

