CSE502: Foundations of Parallel Programming

Lecture 23: Parallel Programming in
Partitioned Global Address Space

Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

Last Class

* Collective communications in MPI
— One to Many (Broadcast, Scatter)
— Many to One (Reduce, Gather)
— Many to Many (AllIReduce, Allgather)

* Hybrid parallelism by using OpenMP
thread-level parallelism in MPI processes

Today’s Class

* PGAS programming model

e (Slides acknowledgements: Prof. Vivek Sarkar and Prof.
John Mellor-Crummey, COMP422 course, Rice University)

* UPC++
e HabaneroUPC++

|dealized Parallel Architecture

@ect >
e | ——

OO

Shared Memory

Q

@

®

Distributed Memory

Programming Models

HClib
OpenMP
Pthreads

Key:

O Process/Thread
D Memory

MPI

UPC++

|dealized Parallel Architectures of Today

SN

interconnect 3

ey

m—

QOO QOO OO

Hybrid Shared + Distributed Memory

Programming Models

e.g., MPI + OpenMP
PGAS models 5

HPC

Since 1987 - Covering the Fastest Computers
in the World and the People Who Run Tham

O 0 0 0 0 0 0 0 0 0 0 O

Home

Topics

Sectors

Exascale
Specials
Resource Library
Podcast

Events

Solution Channels
Job Bank

About

Subscribe

PGAS Languages

 Unified Parallel C (C)
* Titanium

* Coarray Fortran 2.0
e UPC++

(Java)

(C++)

DARPA Selects Cray and IBM for Final Phase of

HPCS
By Michael Feldman

November 24, 2006

This week, the Defense Advanced Research Projects Agency (DARPA)
selected Cray and IBM as the two Phase Ill developers for the High
Productivity Computing Systems (HPCS) program. Initiated in 2002, the
program is designed to produce a new generation of cost-effective, highly
productive petascale systems for national security, scientific research and
industrial users. The first two phases of HPCS were devoted to critical concept
studies and assessments, preliminary research and development, and risk
reduction engineering. Over the next four years, the third and final phase of
the program will encompass development and demonstration of the HPCS
technologies, culminating in a prototype system by each of the two vendors in
2010.

“This is a great day for Cray and the worldwide supercomputing community,”
said Peter Ungaro, Cray's president and CEO. “The DARPA HPCS program is
an important force that is shaping the future of HPC and the entire computer
industry. With this Phase Ill award, DARPA has recognized Cray as a leading
innovator with the technology, vision and expertise required to deliver world-
class, revolutionary supercomputing systems.”

“IBM, DARPA and the mission partners will collaborate to develop a powerful
and innovative design that will enhance the ability of supercomputers to help
government, businesses and individuals,” said Bill Zeitler, senior vice

http://upc.wikinet.org
http://titanium.cs.berkeley.edu
(Fortran) http://caf.rice.edu
https://bitbucket.org/upcxx

apel (Cray

Fortress (Sun)

General View

A collection of threads (in actual it’s a process)
operating in a partitioned global address space
that is logically distributed among threads. Each
thread has affinity with a portion of the globally
shared address space. Each thread has also a
private space.

Elements in partitioned global space belonging
to a thread are said to have affinity to that
thread.

General Idea (Code from UPC++)

operator Tx() const
{
if (this->where() == global_myrank()) {
// return raw_ptr if the data pointed to is on the same rank
return this->raw_ptr();
}

#1f GASNET_PSHM
return (Tx)pshm_remote_addr2local(this->where(), this->raw_ptr());
#else

// return NULL if this global address can't casted to a valid
// local address
return NULL;
#endif
}

Vector Addition in Shared Memory

#define N 10000

int v1[N], v2[N], vlplusv2[N];
main(int argc, char** argv) {

for(int i=0; i<N; i++;)
vlplusv2[i]=vl[i]+v2][i];

Vector Addition in UPC++ (PGAS)

Cyclic distribution of global
arrays vl, v2 and vlplusv2

#define N 10000
using namespace uUpcxx; V
shared array<int>v1(N), v2(N), vlplusv2(N);
main(int argc, char** argv) {

init(&argc, &argv);

for(int i=MYTHREAD; i<N; i+=THREADS;)

vlplusv2[i]=v1[i]+v2][i];
finalize();

#include <upcxx.h>

UPC++ Memory Model

& Thread 0 Thread 1 Thread

" THREADS-1

@ |

S !

S ; Shared

E 1

[Private 0 Private 1 eoe Private

O THREADS1

* A pointer-to-shared can reference all locations in the
shared space

* A pointer-to-local (“plain old C pointer”) may only
reference addresses in its private space or addresses in its
portion of the shared space

e Static and dynamic memory allocations are supported for
both shared and private memory

UPC++ Execution Model

A number of threads working independently
in SPMD fashion

— Similar to MPI
— MYTHREAD specifies thread index (0. THREADS-1)

— Number of threads specified at compile-time or
run-time

* Synchronization only when needed

— Barriers
— Locks

Zheng et. al., UPC++: A PGAS Extension for C++, IPDPS 2014

Shared and Private Data (1/2)

» Static and dynamic memory allocation of each
type of data

T * local_ptr = (T*) malloc(sizeof(T) * count);

T* global_ptr =upcxx::allocate(MYTHREAD, count);
T* local _copy = (T*) global ptr;

local _copy [count -1] = 10;

13

Shared and Private Data (2/2)

e Static and dynamic memory allocation of each
type of data

* Shared objects placed in memory based on
affinity
— shared scalars have affinity to thread O

— here, a scalar means a non-array instance of any
type (could be a struct, for example)

* by default, elements of shared arrays are
allocated “round robin” among memory
modules co-located with each thread (cyclic
distribution) "

A One-Dimensional Array (Cyclic)

* Consider the following data layout
upcxx::shared _array<int> y(7)
For THREADS=3, we get following cyclic layout

Thread 0 Thread 1 Thread 2
y[O] y[1] y[2]
y[3. y[4] y[3]

A One-Dimensional Array (Block Cyclic)

* Can specify a blocking factor for shared arrays to obtain
block-cyclic distributions

— default block size is 1 element = cyclic distribution

* Shared arrays are distributed on a block per thread basis,
round robin allocation of block size chunks

 Example layout using block size specifications
upcxx::shared_array<int, 2> a(16); // Block Size =2

Thread 0 Thread 1 Thread 2

| a0 [a2 | EC
a[1] a[3] a[o]
a[6] a[8] a[10]
a[7] | a[9] | [a1 |

a[12] a[14]

IESEE a[15) z

Shared and Private Data

* Consider the following data layout directives

upcxx::shared_var<int> x; // x has affinity to thread 0

upcxx::shared array<int>y(3);

int z;

 For THREADS = 3, we get the following layout

Thread 0

X

y[O]

Z

// private

Thread 1

y[1]

Z

Thread 2

——

y[2]

Z

17

Vector Addition in UPC++

Cyclic distribution of global

#include <upcxx.h> arrays v1, v2 and vlplusv2

#define N 10000 Thread 0 Thread 1

using namespace UpPCcxx; 0 1

shared_array<int>v1(N), v2(N), viplusv2(N); 2 3

main(int argc, char** argv) { ::::: :::;;
init(&argc, &argv);

. . . . v2[0] v2[1]
for(int i=MYTHREAD; i<N; i+=THREADS;) DU
viplusv2[i]=v1[i]+v2][i];

] _ viplusv2[0] viplusv2[1]
finalize(); viplusv2[2] viplusv2[3]
} L N N

This is an optimized implementation as each thread accesses only its local memory 13

aoedg paleys

Synchronization in UPC++

 Barrier call
upcxx::barrier();
 Locks

shared lock sv_lock;
shared_array<shared lock> sv_lock array(N);

19

Collective Communication in UPC++

e upcxx::reduce<double>(src, dst, count, root,
UPCXX_SUM, UPCXX_ DOUBLE);

e Likewise other collective communication APls as in
MPI

— upcxXx::bcast
— upcxx::gather

— upcxx::allgather

20

UPC++: Drawbacks

* No inbuilt support for threading
* Rely on third party libraries (e.g. OpenMP)

— Loose integration
* How to overlap computation and communication?

* Hard to avoid the overheads of enabling thread-safety in
UPC++ (e.g., communication calls on OpenMP threads)

— Not very productive

21

HabaneroUPC++: Integrating
Asynchronous Task Parallelism in UPC++

e Goals

— Inter-mixing Habanero-C++ programming
model with UPC++ library (SPMD program)

— Use a modern mainstream programming language
(C++)
— Avoid the need to use a thread-safe
implementation of UPC++
e Use a dedicated communication worker in HClib

Kumar et. al., HabaneroUPC++: A Compiler-free PGAS Library, PGAS 2014 22
© Vivek Kumar

Communication and Computation
Workers in HClib

* Option to build HClib with the support for a
dedicated communication worker

HCLIB_WORKERS = N

(communication worker_id =[0])
(computation workers = [1, n-1])

* Launching a communication task

hclib: :asyncComm ([capture list] () {
<Statements>
}) s

© Vivek Kumar

23

HabaneroUPC++: Integrating
Asynchronous Task Parallelism in UPC++

finish _spmd([=]() {
// “intra-node” asynchronous tasks that is
// executed only by computation workers

async(..., [=]1(0) {.-.});
forasync(..., [=](0) {...});
async_await(..., [=]1(0) {...});
async_future(..., [=]0) {...});

// “inter-node” asynchronous tasks that is
// executed only by communication worker
async_copy(src, dst, size, ...);
async_at(remote _rank, [=]() { ... });

// “locality-free” asynchronous tasks
// uses distributed work-stealing

asyncAny([=]1() { ...});
})s

24
© Vivek Kumar

HabaneroUPC++ Software Stack

Habanero-UPC++ Habanero-UPC++
(Programs)<::| Header File

C++11
Compiler :> 'a

HabaneroUPC++ Runtime Linker ‘::> Exe
UPC++ . 1—7j |
Runtime HClib

25
© Vivek Kumar

Integrating HClib with UPC++

III

Node n

m "...v DW

I*lll

|

Communication

Pushgremore

Node O

Computation
worker

PUShLOCAL
Computation
worker

(o]
(V]
)
e
>
%
X
(]
>
S
©
—
T
£
S 5
—— _ e
c e = = -
c e
m ——
N
7
(QINdS) 1310m
uoI1BIIUNWIWOD

Distributed Work-Stealing in
HabaneroUPC++

Step-1: Step-6: Remote communication worker (victim)
Failed steal at intra- €an send tasks, else it’s a inter-node failed steal

node level

Step-5: Remote communication worker attempts

Step-2: .
to steal tasks from its local thread-pool

Local worker
request the local

communication
worker for inter- Step-3: Local communication worker (thief) finds a

node steal victim that has sufficient number of tasks

Step-4: Lock and wait for tasks from victim 27

© Vivek Kumar

void nqueens(data node) {
if(solution()) return;
else {
for(int i<0; i<SIZE; i++) {

//child;

asyncAny([child]() { nqueens(child); });

i.r.\.tulocal_solutions[numWorkers()];
finish_spmd([=]() {
if(MYTHREAD == 0) {
ngueens(root);
}
};

int my_sum=0, total;

NQueens In
HabaneroUPC++

for(int i=0; iknumWorkers(); i++) my_sum+= local_solutions[i];

upcxx::reduce(&my _sum,

NQueens using HabaneroUPC++
(Distributed Work-Stealing)

100
90 +
80
70
60
50
40
30
20
10

0

Execution time (sec)

64 128 256 512
Edison nodes (each with 24 cores)

Kumar et. al., Optimized Distributed Work-Stealing, 1A3 2016
© Vivek Kumar

Next Classes

e End semester review lecture

Reference Materials

* Programming in the PGAS Model
— http://upc.gwu.edu/tutorials/tutorials sc2003.pdf

* UPC++

— http://ieeexplore.ieee.org/abstract/document/68
77339/

* HabaneroUPC++
— http://vivkumar.github.io/papers/pgas14.pdf

http://upc.gwu.edu/tutorials/tutorials_sc2003.pdf
http://ieeexplore.ieee.org/abstract/document/6877339/
http://ieeexplore.ieee.org/abstract/document/6877339/
http://vivkumar.github.io/papers/pgas14.pdf

