
Lecture 23: Parallel Programming in
Partitioned Global Address Space

Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE502: Foundations of Parallel Programming

Last Class

2

• Collective communications in MPI
– One to Many (Broadcast, Scatter)
– Many to One (Reduce, Gather)
– Many to Many (AllReduce, Allgather)

• Hybrid parallelism by using OpenMP
thread-level parallelism in MPI processes

Today’s Class

3

• PGAS programming model
• (Slides acknowledgements: Prof. Vivek Sarkar and Prof.

John Mellor-Crummey, COMP422 course, Rice University)

• UPC++
• HabaneroUPC++

Idealized Parallel Architecture

4

Idealized Parallel Architectures of Today

5

PGAS Languages

6

• Unified Parallel C (C) http://upc.wikinet.org
• Titanium (Java) http://titanium.cs.berkeley.edu
• Coarray Fortran 2.0 (Fortran) http://caf.rice.edu
• UPC++ (C++) https://bitbucket.org/upcxx

X10 (IBM)
Chapel (Cray)
Fortress (Sun)

General View

A collection of threads (in actual it’s a process)
operating in a partitioned global address space
that is logically distributed among threads. Each
thread has affinity with a portion of the globally
shared address space. Each thread has also a
private space.

Elements in partitioned global space belonging
to a thread are said to have affinity to that
thread.

General Idea (Code from UPC++)

Vector Addition in Shared Memory

9

#include <upcxx.h>
#define N 10000
using namespace upcxx;
int v1[N], v2[N], v1plusv2[N];
main(int argc, char** argv) {

init(&argc, &argv);
for(int i=0; i<N; i++;)

v1plusv2[i]=v1[i]+v2[i];
finalize();

}

Vector Addition in UPC++ (PGAS)

10

#include <upcxx.h>
#define N 10000
using namespace upcxx;
shared_array<int> v1(N), v2(N), v1plusv2(N);
main(int argc, char** argv) {

init(&argc, &argv);
for(int i=MYTHREAD; i<N; i+=THREADS;)

v1plusv2[i]=v1[i]+v2[i];
finalize();

}

Cyclic distribution of global
arrays v1, v2 and v1plusv2

UPC++ Memory Model

• A pointer-to-shared can reference all locations in the
shared space

• A pointer-to-local (“plain old C pointer”) may only
reference addresses in its private space or addresses in its
portion of the shared space

• Static and dynamic memory allocations are supported for
both shared and private memory

UPC++ Execution Model

• A number of threads working independently
in SPMD fashion
– Similar to MPI
– MYTHREAD specifies thread index (0..THREADS-1)
– Number of threads specified at compile-time or

run-time
• Synchronization only when needed

– Barriers
– Locks
– Memory consistency control

Zheng et. al., UPC++: A PGAS Extension for C++, IPDPS 2014

Shared and Private Data (1/2)

13

• Static and dynamic memory allocation of each
type of data

 T * local_ptr = (T*) malloc(sizeof(T) * count);

 T* global_ptr =upcxx::allocate(MYTHREAD, count);
 T* local_copy = (T*) global_ptr;
 local_copy [count -1] = 10;

Shared and Private Data (2/2)

14

• Static and dynamic memory allocation of each
type of data

• Shared objects placed in memory based on
affinity
– shared scalars have affinity to thread 0
– here, a scalar means a non-array instance of any

type (could be a struct, for example)
• by default, elements of shared arrays are

allocated “round robin” among memory
modules co-located with each thread (cyclic
distribution)

A One-Dimensional Array (Cyclic)

15

• Consider the following data layout
upcxx::shared_array<int> y(7)
For THREADS=3, we get following cyclic layout

A One-Dimensional Array (Block Cyclic)

16

• Can specify a blocking factor for shared arrays to obtain
block-cyclic distributions
– default block size is 1 element ⇒ cyclic distribution

• Shared arrays are distributed on a block per thread basis,
round robin allocation of block size chunks

• Example layout using block size specifications
 upcxx::shared_array<int, 2> a(16); // Block Size = 2

Shared and Private Data

17

• Consider the following data layout directives
 upcxx::shared_var<int> x; // x has affinity to thread 0
 upcxx::shared_array<int> y(3);

int z; // private

• For THREADS = 3, we get the following layout

Vector Addition in UPC++

18This is an optimized implementation as each thread accesses only its local memory

Cyclic distribution of global
arrays v1, v2 and v1plusv2#include <upcxx.h>

#define N 10000
using namespace upcxx;
shared_array<int> v1(N), v2(N), v1plusv2(N);
main(int argc, char** argv) {

init(&argc, &argv);
for(int i=MYTHREAD; i<N; i+=THREADS;)
v1plusv2[i]=v1[i]+v2[i];

finalize();
}

Synchronization in UPC++

19

• Barrier call
 upcxx::barrier();

• Locks
 shared_lock sv_lock;
 shared_array<shared_lock> sv_lock_array(N);

Collective Communication in UPC++

20

• upcxx::reduce<double>(src, dst, count, root,
 UPCXX_SUM, UPCXX_DOUBLE);

• Likewise other collective communication APIs as in
MPI
– upcxx::bcast
– upcxx::gather
– upcxx::allgather
......

UPC++: Drawbacks

21

• No inbuilt support for threading
• Rely on third party libraries (e.g. OpenMP)

– Loose integration
• How to overlap computation and communication?
• Hard to avoid the overheads of enabling thread-safety in

UPC++ (e.g., communication calls on OpenMP threads)

– Not very productive

HabaneroUPC++: Integrating
Asynchronous Task Parallelism in UPC++

22

• Goals
– Inter-mixing Habanero-C++ programming

model with UPC++ library (SPMD program)
– Use a modern mainstream programming language

(C++)
– Avoid the need to use a thread-safe

implementation of UPC++
• Use a dedicated communication worker in HClib

Kumar et. al., HabaneroUPC++: A Compiler-free PGAS Library, PGAS 2014
© Vivek Kumar

Communication and Computation
Workers in HClib

23

• Option to build HClib with the support for a
dedicated communication worker

 HCLIB_WORKERS = N

 (communication worker_id = [0])
 (computation workers = [1, n-1])

• Launching a communication task
 hclib::asyncComm ([capture_list](){

 <Statements>
 });

© Vivek Kumar

HabaneroUPC++: Integrating
Asynchronous Task Parallelism in UPC++

24

finish_spmd([=]() {
 // “intra-node” asynchronous tasks that is
 // executed only by computation workers
 async(..., [=]() {...});
 forasync(..., [=]() {...});
 async_await(..., [=]() {...});
 async_future(..., [=]() {...});

 // “inter-node” asynchronous tasks that is
 // executed only by communication worker
 async_copy(src, dst, size, ...);
 async_at(remote_rank, [=]() { ... });

 // “locality-free” asynchronous tasks
 // uses distributed work-stealing
 asyncAny([=]() { ...});
});

© Vivek Kumar

HabaneroUPC++ Software Stack

25

HClib

© Vivek Kumar

Integrating HClib with UPC++

26

PushREMOTE

PushLOCAL

STEAL STEAL

Node_0

Communication
worker

Computation
worker

Computation
worker

DOUTDIN

Communicati
on worker

Comput
ation

Comput
ation

DOUTDIN

Node_n

U
PC

++
 fo

r C
om

m
un

ic
at

in
g

main () {
 finish_spmd ([=]() {
 local;
 remote;
 });
}

Co
m

m
un

ic
at

io
n

w
or

ke
r (

SP
M

D)

© Vivek Kumar

Distributed Work-Stealing in
HabaneroUPC++

27

Step-1:
Failed steal at intra-

node level

Step-2:
Local worker

request the local
communication
worker for inter-

node steal

Step-6: Remote communication worker (victim)
can send tasks, else it’s a inter-node failed steal

Step-4: Lock and wait for tasks from victim

Step-3: Local communication worker (thief) finds a
victim that has sufficient number of tasks

Step-5: Remote communication worker attempts
to steal tasks from its local thread-pool

© Vivek Kumar

NQueens in
HabaneroUPC++

void nqueens(data node) {
 if(solution()) return;
 else {
 for(int i<0; i<SIZE; i++) {
 ……
 //child;
 asyncAny([child]() { nqueens(child); });
 }
 }
}
main() {
 ……
 int local_solutions[numWorkers()];
 finish_spmd([=]() {
 if(MYTHREAD == 0) {
 nqueens(root);
 }
 });
 int my_sum=0, total;
 for(int i=0; i<numWorkers(); i++) my_sum+= local_solutions[i];
 upcxx::reduce(&my_sum, ……………
}

NQueens using HabaneroUPC++
(Distributed Work-Stealing)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

64 128 256 512

E
xe

cu
tio

n
 t
im

e
 (

se
c)

Edison nodes (each with 24 cores)

BaselineWS (Rand)

Kumar et. al., Optimized Distributed Work-Stealing, IA3 2016
© Vivek Kumar

Next Classes

• End semester review lecture

Reference Materials

• Programming in the PGAS Model
– http://upc.gwu.edu/tutorials/tutorials_sc2003.pdf

• UPC++
– http://ieeexplore.ieee.org/abstract/document/68

77339/

• HabaneroUPC++
– http://vivkumar.github.io/papers/pgas14.pdf

http://upc.gwu.edu/tutorials/tutorials_sc2003.pdf
http://ieeexplore.ieee.org/abstract/document/6877339/
http://ieeexplore.ieee.org/abstract/document/6877339/
http://vivkumar.github.io/papers/pgas14.pdf

