CSE502: Foundations of Parallel Programming

Lecture 24: End Semester Review

Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

Locality Benefits: Analyzing Locality
Iterative Averaging

[Main Memory }

| L2cache | | L2 Cache |

Locality benefits
EN NN will be realized
- - - - if all instances

of chunk 0 o
execute on the

Place 0 Place 0 same core and
h . . i reuse data from

PL2 (b) the same cache

1
PL4 | |PLS | [PL6 Place 0
(a) PL1 PL2

(c)

A Quad-core workstation

L

P
PL3

Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec32-slides-
vl.pdf?version=1&modificationDate=1483206145705&api=v2

Hierarchical Place Trees in HClib

<?xml version="1.0"7?>
<!DOCTYPE HPT SYSTEM "hpt.dtd">

<HPT version="0.1" info="HPT test">
<place num="1" type="mem">
<place num="2" type="cache">
<worker num="1"/>
</place>
</place>
</HPT>

» Abstraction of the memory hierarchy that a HClib
program is executed on (using XML document)

= Place denoting affinity group at memory hierarchy
level

"= E.g., L1 cache, L2 cache, DRAM

© Vivek Kumar

Hierarchical Place Trees in HClib

Example HPT:
- 2 sockets with shared L3
- 2 shared L2 per socket

P2

P7 P8 P9 P10 P11 P12 P13 P14
S = T = S = = =
wO, wl w2 w3 wi w5 wb w7

asyncAtHpt(P7, S1); asyncAtHpt(P9, S2); asyncAtHpt(P12, S3);
asyncAtHpt(P14, S4);
asyncAtHpt(P2, S5);
asyncAtHpt(P4, S6);
asyncAtHpt(P6, S7);
asyncAtHpt(PO, S8);

= |eaf places include worker threads
= E.g., WO, W1, W2, W3

= Workers can push task to any place
asyncAtHpt(place*, lambda)

= Workers can pop/steal only from their parent place hierarchy

HClib Futures: Tasks with Return Values

future_t<T> *f = async_future {S}

* Creates a new child °
task that executes S,
which must
terminate with a
return statement and
return value

* Async expression
returns a pointer to a
container of type
future t

Source:
https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec

slides.pdf?version=1&modificationDate=1483206145961&api=v2

T result = f.get();

get() evaluates f and
blocks if f’s value is
unavailable

Unlike finish which
waits for all tasks in
the finish scope, a
get operation only
waits for the
specified
async_future :

hclib::promise v/s hclib::future

 “A promise is an object that can store a value of
type T to be retrieved by a future object (possibly
in another thread), offering a synchronization
point”
— Writable end of an object

* “A future is an object that can retrieve a value
from some provider object or function, properly
synchronizing this access if in different threads”

— Readable end of an object

Source: http://www.cplusplus.com/reference

hclib::promise_t and hclib::future _t workflow

hclib::async

Create Promise Object
hclib::promise_t<T> promise_obj = new
hclib::promise_t<T>()

Fetch Future Object from Promise Object hclib::async

promise_obj->get_future()

Ut

Create hclib::async and
pass promise_obj

N

Do some work

Get Blocked on
promise_obj->get_future()->get()

Ut

Set value in
promise_obj->put(res) I
promise_obj->get_future()->get()

function returns the value set in
promise object

Continue work

U

hclib::async hclib::async

Modification of Source: http://thispointer.com/c11-multithreading-part-8-stdfuture-stdpromise-and-returning-values-from-thread/

Data-Driven Task (DDT) in HClib

async_await(lambda, fObj_1, fObj 2,.....,fObj _n)

* Unlike any other async tasks that we have seen
so far (async, asyncAtHpt, async_future),
async_await task is pushed to the deque ONLY
after all the future objects in the parameter list
are ready with values inside them

— i.e. the put has been performed on the promise end
of each of the future objects

Source:
https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec14-slides- 8

v1.key.pdf?version=1&modificationDate=1483206145028&api=v2

Identifies a function

as a Cilk procedure,
capable of being Cilk is a faithful

spawned in parallel extension of C, i.e., it

=

supports serial elision

Introducing Cilk

The named Child
procedure can execute in

cilk uint64 t fib(uint64 t n) {
if (n < 2) {

}

}

}

cilk int main(int argc argv) {
int result = spawn fib(40);
sync;

}

return n;
else {
uinté4_t 5

X = spawn fib{w=1);

y - spaunflb(n2),
sync;

return (X + y);

/ parallel with the parent
caller

Control cannot pass this
point until all spawned
children have returned

spawn keyword can only be
applied to a Cilk function, and

— cannot be used in a C function

I Cilk function cannot be called
as normal C function, and
must be called with spawn &
waited for by a sync

Fully-strict v/s Terminally-strict

 Whatis a “strict” computation?

— A strict computation is one in which all join edges from a task go
to one of its ancestor tasks in the computation graph

cilk void compute(Node* node) { void compute(Node* node) {
int 1: int i:
process(node); //sequential process(node); //sequential
for(i=0; i<node->numChild; i++) { for(i=0; i<node->numChild; i++) {
spawn compute(node->child[i]); async compute(node->child[i]);
} }
sync;
} }
cilk void DFS(Node* root) { void DFS(Node* root) {
spawn compute(root); finish compute(root);
sync; }
} Cilk | 4 HClib 14
DFS : (
\ Sequential
call to
wmpmeQ"‘\ fi«':;'if:‘ T Escaping async
(AN —> a child can
. : outlive its parent,
: compute Jit ik i.e. avoiding
compute) compute Fdb o | '
AT s N PR unnecessary
/ |. \ / \ / o { \ ‘-: / synchronization
compute Q % Q () Q compute \ f*‘\ ' :
N

é):oompute
|

Computing a Product in Parallel using inlet & abort

cilk int product(lnt *A, int n) {

int p =1;
inlet void mult(int x) {
* = % :
if (p == 0) {
abort;
}
return;

}

if (n == 1) {

return A[OQ0];
} else {

mult (spawn product(A, n/2));

if (p == 0) {

return O;

}

mult (spawn product(A+n/2, n-n/2));

sync;

return p;

11

OpenMP Parallel Programming Model

#pragma omp parallel if (n>limit) default(none) \

shared(n,a,b,c,x,y,z) private(f,i,scale) -

{
f =1.0; g—|Statement is executed
by all thread
#pragma omp for nowait <mmmmm§ LS —
. . . arallel loop
for (1=0; 1i<n; 1i++) £ P N (e
2[i] = x[i] + y[i]; (work is distributed) o
<llllllll|lllllé q
D
#pragma omp for nowait <mmmmm§ %
®
for (i=0; i<n; i++) parallel loop Q
a[i] = b[i] + c[i]; (work is distributed) g
<lllllllllllllllE
#pragma omp barrier <€ synchronization
scale = sum(a,0,n) + sum(z,0,n) + f; <—Sta‘z';‘z’l‘|‘ti:r§:::“‘°d
} /*-_ End Of parallel region ——*/ <mummlmmmm

PR R s e

O oI

Task Directive

Task Synchronization | RWNTH
Task Synchronization explained:

#pragma omp parallel num threads (np)
{

#pragma omp task np Tasks created here, one for each thread

function A();

All Tasks guaranteed to be completed here

#pragma omp single

{
#pragma omp task « 1 Task created here

function B();

}
] < B-Task guaranteed to be completed here

Data Scoping with Tasks

Best Practice to

avoid unexpected
/ results !!

#pragma omp parallel default (none) shared(A) private (B)
{

#pragma omp task Ais shared

t B is firstprivate
int C; / C is private
compute (A, B, C);

14

MPIl: SPMD Pattern

Process 1 Process 2 Process 3 Process 4
(rank=0) (rank=1) (rank=2) (rank=3)

SPMD: Single Program Multiple Data
Run the same program on P processing elements (PEs)

Use the “rank” ... an ID ranging from 0 to (P-1) ... to
determine what computation is performed on what
data by a given PE

Different PEs can follow different paths through the
same code

15

Message Buffering

Processor 1 Processor 2

process A process B

application SEND network application RECV

system buffer system buffer

Path of a message buffered at the receiving process

* Not possible to synchronize every MPIl_Send with matching
MPI_Recv

— How to deal if a send arrives before a matching recv is posted?
— How to deal with multiple sends arriving?

 “MPI Implementations” (not MPI standard!) typically
reserves a system buffer to hold data in transit

16
Picture source: https://computing.linl.gov/tutorials/mpi/

Code available on github: https://github.com/vivkumar/cse502/tree/master/mpi

Message Ordering Guarantee

main(int argc, char **argv) {
int rank, nproc;

if(rank == 1) {
for(int i=0; i<MAX; i++) {
MPI_Send(&i, 1, MPI_INT, @, tag, MPI_COMM_WORLD);
}
}
else if(rank == 0) {
int buffer[MAX];
for(int i=0; i<MAX; i++) {
MPI_Recv(&buffer[i], 1, MPI_INT, 1, tag, MPI_COMM_WORLD, &status);
assert(buffer[i] == i); // Never fails

R P

* |If asender sends two messages (Msg_1 and Msg_2) in succession
to same destination, and both match the same receive, the recv

operation will always receive Msg 1 before Msg 2

17
© Vivek Kumar

No Guarantee for Fairness

 MPI does not guarantee fairness

 Example: task O sends a message to task 2.
However, task 1 sends a competing message that
matches task 2's receive. Only one of the sends
will complete

18
Picture source: https://computing.linl.gov/tutorials/mpi/ © Vivek Kumar

Non-Blocking Point-to-Point
Communications

* MPI _Isend
* MPI lrecv

1. These APIs returns immediately. They do not
wait for any communication events to complete,
such as message copying from user memory to
system buffer space or the actual arrival of
message

2. Provide opportunities to overlap computations
and communications — unlike their blocking
counterparts

19

Collective Communications in MPI

0\0\/0/0 Q\O\/Q.

broadcast scatter

Q//

gather reduction

source: https://computing.linl.gov/tutorials/mpi/

20

PGAS Programming: General View

* A collection of threads operating in a
partitioned global address space that is
logically distributed among threads

* Each thread has affinity with a portion of the

globally shared address space. Each thread
has also a private space.

* Elements in partitioned global space

belonging to a thread are said to have affinity
to that thread.

UPC++ Memory Model

& Thread 0 Thread 1 Thread

" THREADS-1

@ |

S !

S ; Shared

E 1

[Private 0 Private 1 eoe Private

O THREADS1

* A pointer-to-shared can reference all locations in the
shared space

* A pointer-to-local (“plain old C pointer”) may only
reference addresses in its private space or addresses in its
portion of the shared space

e Static and dynamic memory allocations are supported for
both shared and private memory

Shared and Private Data (UPC++)

* Consider the following data layout directives
upcxx::shared_var<int> x; // x has affinity to thread 0
upcxx::shared array<int>y(3);
int z; // private

 For THREADS = 3, we get the following layout

Thread 0 Thread 1 Thread 2
X ><
y[O] y[1] y[2]
Z Z Z 23

Next Two Lectures

e Student seminar
— 10+2 min slot

24

