
Lecture 24: End Semester Review

Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE502: Foundations of Parallel Programming

Locality Benefits: Analyzing Locality
Iterative Averaging

2Source: https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec32-slides-
v1.pdf?version=1&modificationDate=1483206145705&api=v2

Hierarchical Place Trees in HClib

3

§ Abstraction of the memory hierarchy that a HClib
program is executed on (using XML document)

§ Place denoting affinity group at memory hierarchy
level
§ E.g., L1 cache, L2 cache, DRAM

© Vivek Kumar

§ Leaf places include worker threads
§ E.g., W0, W1, W2, W3

§ Workers can push task to any place
 asyncAtHpt(place*, lambda)
§ Workers can pop/steal only from their parent place hierarchy

Hierarchical Place Trees in HClib

HClib Futures: Tasks with Return Values

5

future_t<T> *f = async_future { S }

• Creates a new child
task that executes S,
which must
terminate with a
return statement and
return value

• Async expression
returns a pointer to a
container of type
future_t

T result = f.get();
• get() evaluates f and

blocks if f’s value is
unavailable

• Unlike finish which
waits for all tasks in
the finish scope, a
get operation only
waits for the
specified
async_futureSource:

https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec5-
slides.pdf?version=1&modificationDate=1483206145961&api=v2

hclib::promise v/s hclib::future

• “A promise is an object that can store a value of
type T to be retrieved by a future object (possibly
in another thread), offering a synchronization
point”
– Writable end of an object

• “A future is an object that can retrieve a value
from some provider object or function, properly
synchronizing this access if in different threads”
– Readable end of an object

6
Source: http://www.cplusplus.com/reference

7
Modification of Source: http://thispointer.com/c11-multithreading-part-8-stdfuture-stdpromise-and-returning-values-from-thread/

hclib::promise_t and hclib::future_t workflow

Get Blocked on
promise_obj->get_future()->get()

promise_obj->get_future()->get()
function returns the value set in

promise object

Set value in
promise_obj->put(res)

Create Promise Object
hclib::promise_t<T> promise_obj = new

hclib::promise_t<T>()

Fetch Future Object from Promise Object
promise_obj->get_future()

Create hclib::async and
pass promise_obj

hclib::async

hclib::async

Do some work

Continue work

hclib::async hclib::async

Data-Driven Task (DDT) in HClib

async_await(lambda, fObj_1, fObj_2,…..,fObj_n)
• Unlike any other async tasks that we have seen

so far (async, asyncAtHpt, async_future),
async_await task is pushed to the deque ONLY
after all the future objects in the parameter list
are ready with values inside them
– i.e. the put has been performed on the promise end

of each of the future objects

8
Source:
https://wiki.rice.edu/confluence/download/attachments/24426821/comp322-s16-lec14-slides-
v1.key.pdf?version=1&modificationDate=1483206145028&api=v2

Introducing Cilk

9

cilk uint64_t fib(uint64_t n) {
 if (n < 2) {
 return n;
 } else {
 uint64_t x, y;
 x = spawn fib(n-1);
 y = spawn fib(n-2);
 sync;
 return (x + y);
 }
}
cilk int main(int argc, char** argv) {
 int result = spawn fib(40);
 sync;
}

Identifies a function
as a Cilk procedure,

capable of being
spawned in parallel The named Child

procedure can execute in
parallel with the parent

caller

Control cannot pass this
point until all spawned
children have returned

spawn keyword can only be
applied to a Cilk function, and
cannot be used in a C function

Cilk function cannot be called
as normal C function, and

must be called with spawn &
waited for by a sync

Cilk is a faithful
extension of C, i.e., it
supports serial elision

Fully-strict v/s Terminally-strict

10

• What is a “strict” computation?
– A strict computation is one in which all join edges from a task go

to one of its ancestor tasks in the computation graph

Computing a Product in Parallel using inlet & abort

11

OpenMP Parallel Programming Model

Task Directive

13

Data Scoping with Tasks

14

#pragma omp parallel default(none) shared(A) private(B)
{
 ...
#pragma omp task
 {
 int C;
 compute(A, B, C);
 }
}

A is shared
B is firstprivate
C is private

Best Practice to
avoid unexpected
results !!

MPI: SPMD Pattern

15

• SPMD: Single Program Multiple Data
• Run the same program on P processing elements (PEs)
• Use the “rank” … an ID ranging from 0 to (P-1) … to

determine what computation is performed on what
data by a given PE

• Different PEs can follow different paths through the
same code

Process_1
(rank=0)

Process_2
(rank=1)

Process_3
(rank=2)

Process_4
(rank=3)

Message Buffering

16

• Not possible to synchronize every MPI_Send with matching
MPI_Recv
– How to deal if a send arrives before a matching recv is posted?
– How to deal with multiple sends arriving?

• “MPI Implementations” (not MPI standard!) typically
reserves a system buffer to hold data in transit

Picture source: https://computing.llnl.gov/tutorials/mpi/

Message Ordering Guarantee

17

• If a sender sends two messages (Msg_1 and Msg_2) in succession
to same destination, and both match the same receive, the recv
operation will always receive Msg_1 before Msg_2

main(int argc, char **argv) {
 int rank, nproc;

 if(rank == 1) {
 for(int i=0; i<MAX; i++) {
 MPI_Send(&i, 1, MPI_INT, 0, tag, MPI_COMM_WORLD);
 }
 }
 else if(rank == 0) {
 int buffer[MAX];
 for(int i=0; i<MAX; i++) {
 MPI_Recv(&buffer[i], 1, MPI_INT, 1, tag, MPI_COMM_WORLD, &status);
 assert(buffer[i] == i); // Never fails
 }
 }

}

Co
de

 a
va

ila
bl

e
on

 g
ith

ub
: h

tt
ps

:/
/g

ith
ub

.c
om

/v
iv

ku
m

ar
/c

se
50

2/
tr

ee
/m

as
te

r/
m

pi

© Vivek Kumar

No Guarantee for Fairness

18

• MPI does not guarantee fairness
• Example: task 0 sends a message to task 2.

However, task 1 sends a competing message that
matches task 2's receive. Only one of the sends
will complete

Picture source: https://computing.llnl.gov/tutorials/mpi/ © Vivek Kumar

Non-Blocking Point-to-Point
Communications

19

• MPI_Isend
• MPI_Irecv

1. These APIs returns immediately. They do not
wait for any communication events to complete,
such as message copying from user memory to
system buffer space or the actual arrival of
message

2. Provide opportunities to overlap computations
and communications – unlike their blocking
counterparts

Collective Communications in MPI

20
Picture source: https://computing.llnl.gov/tutorials/mpi/

PGAS Programming: General View

• A collection of threads operating in a
partitioned global address space that is
logically distributed among threads

• Each thread has affinity with a portion of the
globally shared address space. Each thread
has also a private space.

• Elements in partitioned global space
belonging to a thread are said to have affinity
to that thread.

UPC++ Memory Model

• A pointer-to-shared can reference all locations in the
shared space

• A pointer-to-local (“plain old C pointer”) may only
reference addresses in its private space or addresses in its
portion of the shared space

• Static and dynamic memory allocations are supported for
both shared and private memory

Shared and Private Data (UPC++)

23

• Consider the following data layout directives
 upcxx::shared_var<int> x; // x has affinity to thread 0
 upcxx::shared_array<int> y(3);

int z; // private

• For THREADS = 3, we get the following layout

Next Two Lectures

24

• Student seminar
– 10+2 min slot

