Lecture 01: Course Introduction

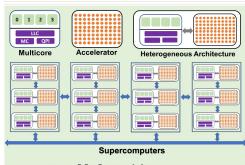
Vivek Kumar Computer Science and Engineering IIIT Delhi vivekk@iiitd.ac.in

About me

https://hipec.github.io/

Research Focus

Parallel Progra


1. High Productivity

2. High Performance

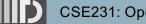
3. Energy Efficiency

Parallel Runtime Systems

Operating System

Parallel Architectures

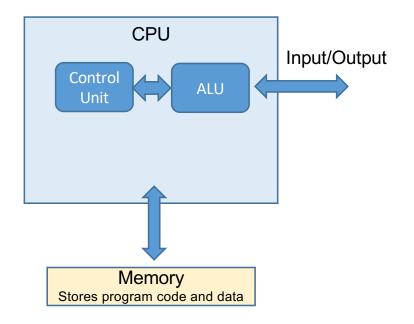
I spend my time at the HiPeC Lab or roaming in the majestic Himalayas..



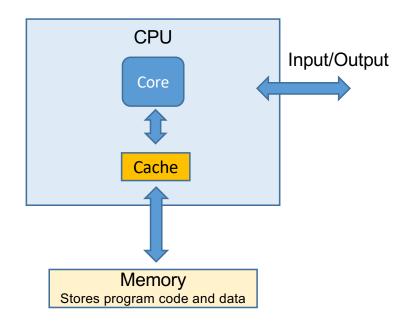
CSE231: Operating Systems

Today's Lecture

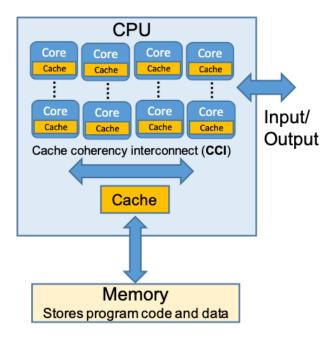
- Modern computing architecture
- High-level overview of operating systems
- Roles of an OS
- Challenges in modern OS
- Course evaluation and logistics


Lecture 01: Course Introduction

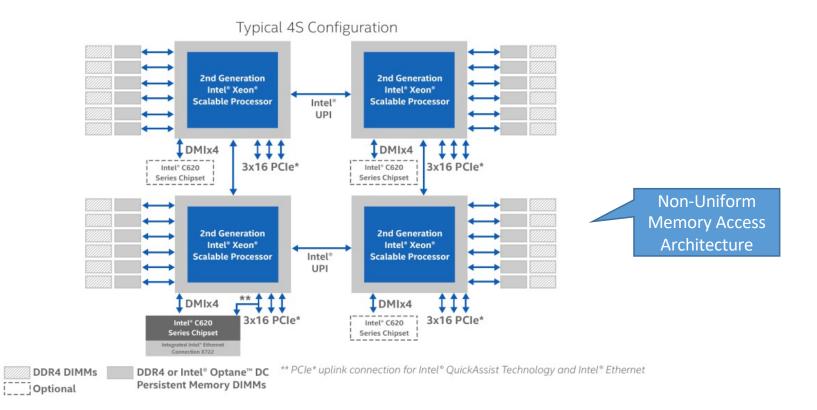
Let us first quickly try to understand the modern computer architecture

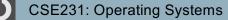

CSE231: Operating Systems

Von Neumann Architecture & Associated Issues (1/3)


 John Von Neuman in 1945 came up with the architecture for computers that we even use today (albeit with several changes)

Von Neumann Architecture & Associated Issues (2/3)


- Memory bottleneck
 - o **Problem**
 - Access latency to memory quite high
 - High CPU stalls while fetching code and data
 - \circ Solution
 - Add cache on the CPU chip to store frequently accessed memory

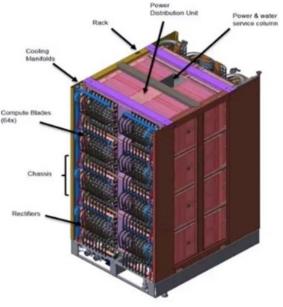

Von Neumann Architecture & Associated Issues (3/3)

- Performance bottleneck
 - Problem
 - Design issues with increasing the performance of single core processor
 - High heat dissipation
 - Even capable of melting the processor!
 - High power consumption
 - Solution (around 2004)
 - Add more cores to achieve better performance instead of increasing the performance of a single core
 - Still maintains the Moore's law
 - Add cache coherency interconnect (CCI) to fetch data on one core from the other core's cache instead of going all the way up to main memory

Latest Server Processors

Key

Latest Supercomputer (June 2024)



System

- 2 EF Peak DP FLOPS
- 74 compute racks
- 29 MW Power Consumption
- 9,408 nodes
- 9.2 PB memory (4.6 PB HBM, 4.6 PB DDR4)
- Cray Slingshot network with dragonfly topology
- 37 PB Node Local Storage
- 716 PB Center-wide storage
- 4000 ft² foot print

Olympus rack

- 128 AMD nodes
- 8,000 lbs
- Supports 400 KW

AMD node

- 1 AMD "Trento" CPU
- 4 AMD MI250X GPUs
- 512 GiB DDR4 memory on CPU
- 512 GiB HBM2e total per node (128 GiB HBM per GPU)
- Coherent memory across the node
- 4 TB NVM
- GPUs & CPU fully connected with AMD Infinity Fabric
- 4 Cassini NICs, 100 GB/s network BW

Compute blade

• 2 AMD nodes

Source: https://www.nextplatform.com/wp-content/uploads/2022/03/oak-ridge-al-geist-frontier-specs.jpg

Today's Lecture

- Modern computing architecture
- High-level overview of operating systems
- Roles of an OS
- Challenges in modern OS
- Course evaluation and logistics

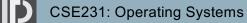
What is an Operating System?

 OS is a piece of software whose job is the manage the computer's resources for its users and applications

Ρ

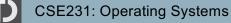
System

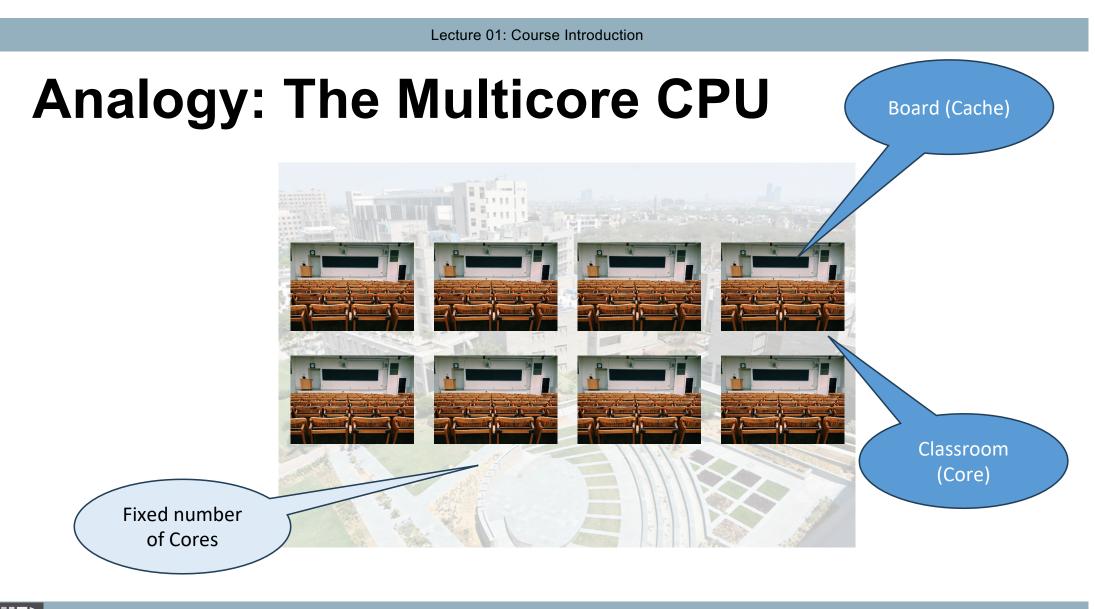
Software


Application Software

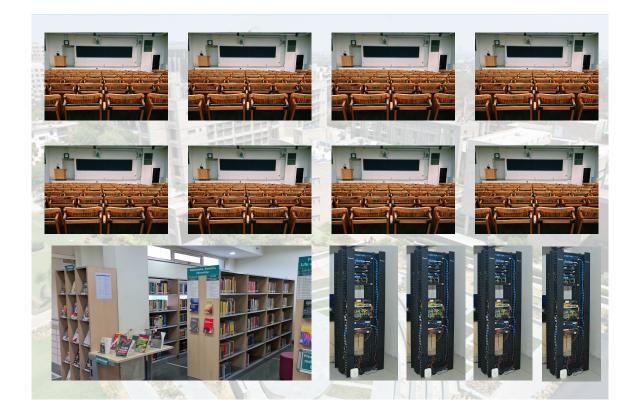
Operating System

Computer Hardware

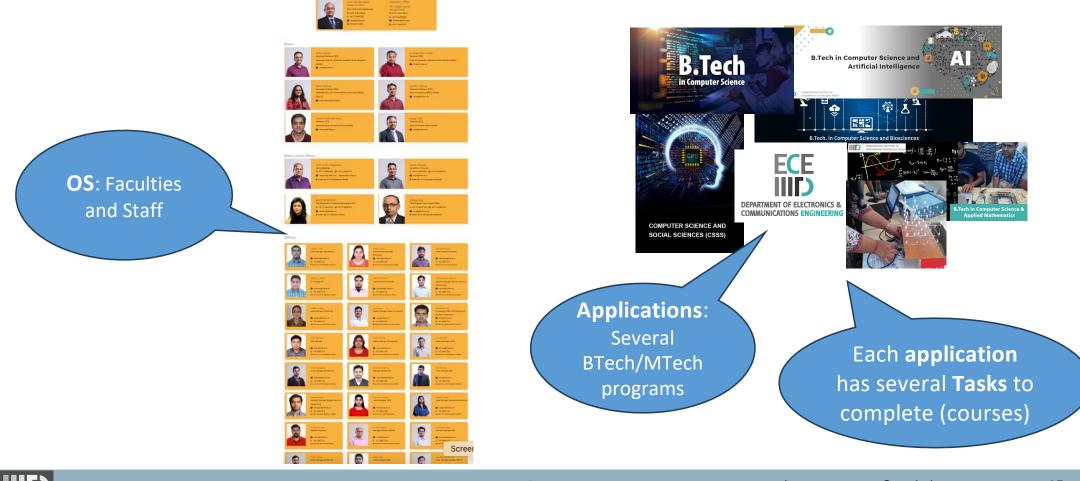

Analogy: The Hardware

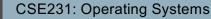


Analogy: Disk & DRAM


Data is read from Library – persistent the Disk (Library) storage of data (Disk) and stored in central server (DRAM) in the form of lecture slides Any familiarity with memory hierarchy?

CSE231: Operating Systems


Analogy: The Complete Hardware

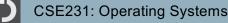


Lecture 01: Course Introduction

Analogy: Operating System & Applications

Major Goals of Operating Systems

- 1. Virtualization
 - o CPU
 - o Memory
- 2. Concurrency
- 3. Persistence
- 4. Protection and security


Analogy: Virtualization (CPU cores)

program

The operating system gives an "illusion" to each application that the entire hardware is only for that application

So many applications can Ο execute on the same hardware with limited resources (fixed number of cores, DRAM, and disk)

Analogy: Virtualization (CPU cores)

Application stored in file v/s running applications

- Each running application (Process) has some code and data associated with it (e.g., course and lecture materials)
 - Faculty prepares the lecture by fetching materials from library (**Disk**) and then preparing lecture material/slides saved on servers (**DRAM**)
 - Lectures are Scheduled in a classroom where the faculty uses the whiteboard (Cache) to teach the topic

CSE231: Operating Systems

Analogy: Virtualization (CPU cores)

- Only one Task can run on a CPU core at any given time
 - 1. A classroom is used to run lectures from different courses
 - 2. During the lecture, students write down notes from the board (**cache**) onto their notebook (persistent storage)
 - 3. Next faculty enters the classroom for delivering a different lecture
 - 4. First, a recap of the topics discussed in the last lecture is carried out before starting the lecture
 - Reloading the context
 - Above steps are a very high-level overview of context switch between processes for time sharing of a CPU core!

CSE231: Operating Systems

Analogy: Virtualization (Memory)

- Faculties and admin (OS) stores the data from each program (courses, lectures, documents, etc.) in the servers (DRAMs)
- It gives an illusion that there are dedicated memory spaces for each program
 - In the reality each program's data could be stored in pieces over several DRAMs (physical address)
 - However, this complexity is abstracted away by the O.S.

CSE231: Operating Systems

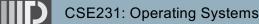
Lecture 01: Course Introduction

Analogy: Concurrency

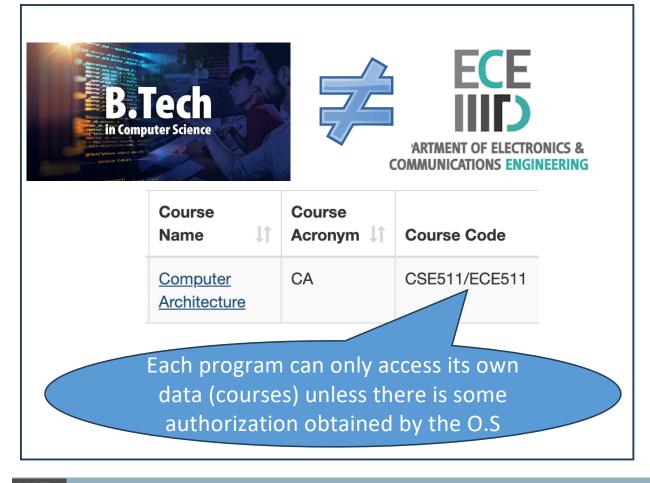

Scheduling algorithm of IIIT-Delhi

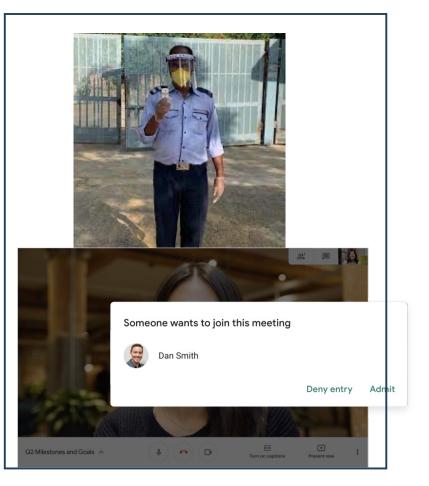
							B.Tech	. 3rd & 4th \	/ear, M.Tech	. 1st & 2nd y	ear, Ph.D	Monsoon	Semester A	(2022-23
Day	8.30-9.00	9 -9:30	9:30-10	10-10:30	10:30-11	11-11:30	11:30-12	12-12:30	12:30-1	1-1:30	1:30-2	2-2:30	2:30-3	3-3:30
Mon			CN (Sec A) CN (Sec B) BML WSI IDUDA NDM MLBA CMSMR MAD RA-II	C21 C102 C03 C13 C208 C22 A006 C209 C214 C215	Slot 4	AC DMG QMD ETB ME IAGA DFML BioP ADL	C03 C21 C216 C22 A007 C208 C209 C214 A006	slot 2			h son	as seven ne of v		urses, ould be
Tue			CoMeG ML (A) LST QM TML AERM DAVP WN NDMA	C03 C11 C21 C13 C22 C208 C215 C24 C213 C210	Slot 1	FOE CGAS IIA SDOS DSC CMOS SC FF ADC WARDI G&M	C02 A006 C213 A106 C210 C211 A007 C21 C12 C208 C209	Slot 5			th	ne sam	e slot,	OOMS!
			CN (Sec A) CN (Sec B)	C21 C102	Slot 4	CA Chi	A006 C13	slot 9						DIP GA

- A program could have several independent tasks (set of instructions) that could executed simultaneously over multicore CPUs
 - Multiple threads of execution
- However, some course has prerequisite courses that the students should complete first
 - o Dependencies in multi-threaded execution


CSE231: Operating Systems

Concurrency vs. Parallelism




Analogy: Persistence

 At the end of each semester, academic department collect and permanently save the lecture slides, quiz sheets, assignments and project, and student's answer sheets for mid/end semester exams (for each courses)

Analogy: Protection (Internal) & Security (External)



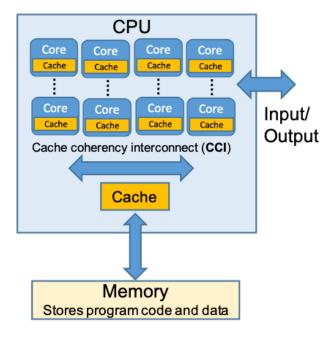
Today's Lecture

- Modern computing architecture
- High-level overview of operating systems
- Roles of an OS
- Challenges in modern OS
- Course evaluation and logistics

Roles of an Operating System

• Referee

o Manages all the shared resources in the computer


Illusionist

 \circ Each application thinks that the entire computer belong to itself

• Glue

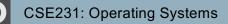
Offers standard services to simplify application development and facilitate sharing

Roles of an Operating System (Example-1)

 Let us try to understand it from the perspective of a desktop/laptop

Roles of an Operating System (Example-1)

Referee


- Each application will be launching several tasks
 - Gaming app will require graphic rendering, network play support, taking player input via keyboard/mouse, etc.
 - Zoom will require tasks such as network connection, access to mike/camera, graphic rendering, etc.
- As there are several cores, each task can run on a different core
 - But, there are only finite number of resources (cores, caches, input/output devices, memory etc.)

Illusionist

 Allows the application to have hundreds of tasks (several times more than available cores), infinite amount of memory (DRAMs are only in few GBs), etc.

Glue

• Standard APIs for network connection, accessing input/output devices, etc.

Memory Stores program code and data Input/ Output

System

Software

Application

Software

Roles of an Operating System (Example-2)

System

- 2 EF Peak DP FLOPS
- 74 compute racks
- 29 MW Power Consumption
- 9,408 nodes
- 9.2 PB memory (4.6 PB HBM, 4.6 PB DDR4)
- Cray Slingshot network with dragonfly topology
- 37 PB Node Local Storage
- 716 PB Center-wide storage
- 4000 ft² foot print

Olympus rack

- 128 AMD nodes
- 8.000 lbs Supports 400 KW

Compute Bla

All water cooled, even DIMMS and NICs

AMD node

- 1 AMD "Trento" CPU
- 4 AMD MI250X GPUs
- 512 GiB DDR4 memory on CPU
- 512 GiB HBM2e total per node (128 GiB HBM per GPU)
- Coherent memory across the node
- 4 TB NVM
- · GPUs & CPU fully connected with AMD Infinity Fabric
- 4 Cassini NICs, 100 GB/s network BW

Compute blade

2 AMD nodes

Let us now try to understand it from the perspective of a supercomputer

Picture source: https://www.nextplatform.com/wp-content/uploads/2022/03/oak-ridge-al-geist-frontier-specs.jpg

CSE231: Operating Systems

Roles of an Operating System (Example-2)

Referee

- Each application will be launching several tasks
 - Either computation, communication, or file handling (no camera, mic, etc.)
 - Application can wait in queue if it is requesting more cores than currently available

Illusionist

- Allows the application to interact with the supercomputer via a single computer node
 - Several computing nodes, each with its own OS
 - Application tasks distributed across all the nodes
 - Adapts to node failures (migrate tasks to another node)

Glue

 APIs for communication and accessing disjoint data (at different nodes) with low latency (e.g., Message Passing Interface APIs)

All water cooled, even DIMMS and NICs

CSE231: Operating Systems

© Vivek Kumar

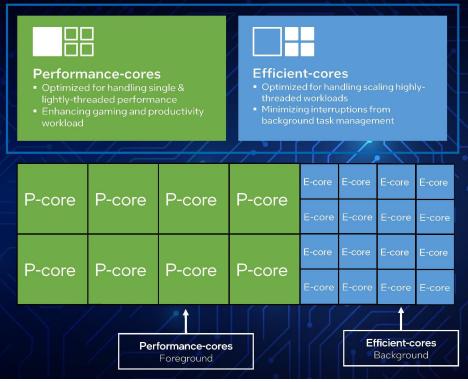
30

Operating System Specific to Hardware

Ţ		 Throughput oriented (manages several tasks) E.g., Windows, Linux, MacOS 	 Lightweight Highly user friendly (GUI) Smaller memory footprint (more than RTOS) E.g., Andriod, iOS 	 Time bound and limited tasks May work with small memory E.g., Nucleus RTOS 		
		Laptop/Desktop Operating System	Mobile Operating System	Real time Operating System		
Operating System						
Computer	r Hardware					

Today's Lecture

- Modern computing architecture
- High-level overview of operating systems
- Roles of an OS
- Challenges in modern OS
- Course evaluation and logistics

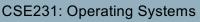


Major Challenges in Modern OS

Major Challenges in Modern OS

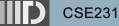
• Performance and Energy

Which tasks should run on P-core and which ones on E-cores?


What should be the processor core frequency while running a particular task? High frequency can give better performance, but requires more energy, and vice-versa

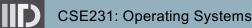
Images source: https://www.techspot.com/news/94919-preview-core-i9-13900-engineering-sample-performance-looks.html

CSE231: Operating Systems



Major Challenges in Modern OS

Today's Lecture


- Modern computing architecture
- High-level overview of operating systems
- Roles of an OS
- Challenges in modern OS
- Course evaluation and logistics

Course Evaluation (Section-A)

- Both sections will be graded separately
 - Evaluation components are same, but quizzes/assignments/exams will be total different
 - Below mentioned N-1 policy specific to Section-A only
- Quiz: 10% (N-1 policy)
 - No surprise quizzes
 - Will be held during lecture hours (around 20mins duration)
- Semester exams
 - Mid-sem: 20%
 - End-sem: 35%
- Take home assignments 35%
 - **NO (N-1 policy)** !!!

I might have a different lecture plan/content than you see currently on Techtree. However, the COs would remain the same

Important Information

- 1. Please **Don't** open-source assignment implementations after the course gets over
- 2. We will **Not** upload mid/end semester solution/rubric on Google Classroom
 - Although, we will discuss it in class
- 3. We will be taking in-class attendance
 - Lecture recordings will not be provided

Course Prerequisites

• C programming and debugging skills are must!

- You must have used C in your DSA course and in OS refresher module
- If you don't know C then better start practicing so as you don't face issues with the course assignments
 - First one will be released early next week!

We will strictly follow the IIITD **plagiarism policy**. No excuses if you get caught in plagiarism

Next Lecture

• Source code to machine code

