
CSE231: Operating Systems

Lecture 02: Source Code to
Machine Code

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Today’s Class
● Compilation steps
● Linking
● Introduction to Executable File Format (ELF)

2

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Hardware and Software

3

I only understand
0s and 1s

Machine
code I can only talk to a

processor in some
human readable
format. Afterall, I

am human

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Hardware and Software

4

I only understand
0s and 1s

It’s better.. but
Afterall, I am

human

Machine
code

Assembly
code

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Hardware and Software

5

I only understand
0s and 1s

Wonderful!

Machine
code

Assembly
code

C-program

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Hardware and Software

6

Preprocessing
and

compilationAssembler
and Linker

gcc fib.c
(Compilation phase)

Loader (OS)
(Runtime phase)

Loader loads the program
image into the memory at

runtime and jumps to
main routine

Linker takes multiple
‘.o’ file, produces a
single executable

Assembler produces
‘.o’ file from the
assembly code

Assembly
code

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Hardware and Software

7

Preprocessing
and

compilationAssembler
and Linker

gcc fib.c
(Compilation phase)

Loader (OS)
(Runtime phase)

A.K.A.
Object

file

A.K.A.
Object

file

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Hardware and Software

8

Preprocessing
and

compilationAssembler
and Linker

gcc fib.c
(Compilation phase)

Loader (OS)
(Runtime phase)

Relocatable
Object file

Executable
Object file

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Relocatable Object Files

9

● Symbols (functions and variables) are not bound to any
specific address
o It will happens after linking

● Contains code and data suitable for linking with other
object files to create the final executable or shared object

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Executable Object Files

10

● It is similar to the relocatable file, but all symbols (functions
and variables) have addresses resolved

● Contains all the information for the OS loader to run the
program

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Today’s Class
● Compilation steps
● Linking
● Introduction to Executable File Format (ELF)

11

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Linking
● Combines several

relocatable files (.o) into
a single executable

● Enable separate
compilation of files
o Changes in one file does

not affect other files
§ Recompilation process

is small

12

$ gcc –o fib fib.c // compiling + linking
$ file fib
...ELF 64-bit shared object...dynamically linked
$ gcc -c fib.c // compiling
$ file fib.o // relocatable file
fib.o
$ gcc –o fib fib.o // linking

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Static and Dynamic Linking
● Static linking

o Each and every library
modules referenced in the
relocatable file is copied into
the final executable
§ Static binding at compile

time
● Dynamic linking

o Final executable only
contains references
(pointers) to the library
method instead of the copy
of a library method
§ Binding with library done at

runtime during execution

13

$ gcc –static –o fib fib.c
$ file fib
...ELF 64-bit executable...statically linked
$ ls –l fib
-rwxrwxr-x 1 vivek vivek 845304 Aug 6 10:26 fib
$ gcc –o fib fib.c
$ ls –l fib
-rwxrwxr-x 1 vivek vivek 8328 Aug 6 10:27 fib

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Static and Dynamic Linking
● Static linking

o Each and every library
modules referenced in the
relocatable file is copied into
the final executable
§ Static binding at compile

time
● Dynamic linking

o Final executable only
contains references
(pointers) to the library
method instead of the copy
of a library method
§ Binding with library done at

runtime during execution
● Which is better?

14

$ gcc –static –o fib fib.c
$ file fib
...ELF 64-bit executable...statically linked
$ ls –l fib
-rwxrwxr-x 1 vivek vivek 845304 Aug 6 10:26 fib
$ gcc –o fib fib.c
$ ls –l fib
-rwxrwxr-x 1 vivek vivek 8328 Aug 6 10:27 fib

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Dynamic Linking
● Advantages

o Modular programming
§ If library requires changes/recompilation, the executables referring it

does not need recompilation
o Saves disk space

§ Executable just contain references
§ Multiple executables can access the same .so at runtime

● Disadvantage
o What if the shared library changes or is missing at runtime?

15

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Today’s Class
● Compilation steps
● Linking
● Introduction to Executable File Format (ELF)

16

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Executable and Linkable Format (ELF)

17

● Standard format for binary files (object files and core
dumps) on Linux based OS
o Contains all the information required by the OS to run the program
o Platform independent format
o A standard format eases the process of dynamic linking, loading

and runtime control on a program

● Microsoft Windows OS uses Portable Executable (PE)
● IBM AIX OS uses Extended Common Object File Format

(X-COFF)

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Binary File Format
● Having a standard format for binary files helps linker and

loaders in carrying out its operations easily

18

I know how
to operate
a “Human”

I know how
to operate
a “Human”

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

ELF Motivation (1/2)
● Assume you are

doing some
research that you
have to publish

● You have put a lot
of effort, but can
you just write as
you like?

● There are certain
rules/format for
writing a research
work

19

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

ELF Motivation (2/2)

20

● Assume that you have
an assignment to
provide a single line
summary of 5 articles
from 3 different topics A,
B and C
o Total 15 articles

Expectations: You would submit
the document in this layout

A B C

Submission-1

Submission-2

Submission-3

Reality: Different styles
and combinations
followed by students

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

ELF Motivation (2/2)

21

● I propose a specific
layout to overcome
this challenge and to
make it easy to
understand your
document

● I can easily “load” the
student ”file” from any
number of students in
my “memory” if they
follow a standard
“format” to store
information, e.g., as
the one shown below
for the Submission-1
shown here

researchAreaType=B
numSummaries=5
summaryOffset=20

researchAreaType=A
numSummaries=3
summaryOffset=8

Research paper summary table

numResearchAreas=2
researchAreasInfoOffset=40

Document header containing
submission summary

Summary B-1
Summary B-2
Summary B-3
Summary B-4
Summary B-5

Summary for
5 research
papers in

category-B

Summary for 3
research papers

in category-ASummary A-1
Summary A-2
Summary A-3

Submission-1

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Executable and Linkable Format (ELF)
● ELF header

o Provides a roadmap for the entire file organization
§ Always at offset zero of the object file
§ Provides entry point address for execution

● Two views of an ELF file
o Linkable view (relocatable file)
o Execution view (executable file, shared object)

● Linkable view
o Section header table

§ One section header for each section
o Sections

§ Contains data required for linking
§ Machine code, global variables, (initialized and un-initialized), symbol tables,

line mapping between machine code and original C code, etc.

● Execution (or Loader) view
o Program header table

§ One program header for each segment
o Segments

§ Created by merging several sections
§ Contains information required for by the loader for execution

● Contiguous chunk of memory (ELF header, PHT, SHT, each section, each
segment)

22

Image source: https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Note: For simplicity, we will only discuss
ELF format for 32-bit object files

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

ELF Header

23

Image source: https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.eheader.html

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

ELF Header

24

Image source: https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.eheader.html

Identification
for object file

Object
file type

Entry point address for
starting the executable

Program Header Table (PHT) file offset

Section Header Table (SHT) file offset

ELF header size in bytes (fixed)

Size in bytes of each entry in PHT

Size in bytes of each entry in SHT

Total number of entries in SHT

Total number of entries in PHT

Index of the section called as
“String Table”

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Entry Point?

25

Entry point
address

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Entry Point?

26

Entry point
address

Entry point
address

_start calls
__libc_start_main

with the address of
user main as a

parameter (invoked
from here)

Entry point
actual method

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

ELF Section Header

27

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

ELF Section Header

28

Offset (bytes) into the
section “String Table”

where the name of
this section is stored

Section type (symbol table,
string table, programmer

defined data, etc.)

Address at which first byte of this
section should reside at runtime
(actual address in PHT for a.out)

Offset (bytes) of the starting byte in this
section from the beginning of the object file

Size of the section (vary across sections)

Runtime information for
section, e.g., writable data,
executable data, loadable

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Sections at Linking and Executable

29

Q: Why there are more number of sections in executable v/s
relocatable file?
A: To assist the dynamic loader, the linker adds several more sections
in the executable than in the relocatable

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Few Interesting Sections

31

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

String Table Section (“.shstrtab”)
● As with other sections,

this section is also a
contiguous chunk of
memory

● Stores the name of each
sections
o String (NULL terminated)

33

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Executable Instructions (“.text”)

● Stores bytes corresponding
to program execution (user
code and the GNU C library
supporting code)

35

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Section “.rodata”
● Stores all the string

literals defined in the
program

● Question
o Would the content

change across
relocatable and
executable?

36

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Section “.data”
● Contains the initialized value

of all the global and static
variables from the user code
(not the variable name)
o In our running example it is the

value of the variable
“my_global1”
§ Why not the value of “str”?

● “WA” flag indicates that the
section content is to be loaded
at runtime in memory and is
writable

● PROGBITS indicating it
contains information defined
by the user code

● Where is the name of the
global variable stored?

37

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Section “.bss” ● .bss (Block Started by
Symbol) section indicates
the total memory to be
allocated at runtime for
uninitialized global/static
variables
o In our running example it is

the value of the variable
“my_global2”

● “WA” flag indicates that the
section content is to be
loaded at runtime in
memory and is writable

● NOBITS indicating it relates
to the user code, but it
doesn’t occupy any space
in the object file

● Where is the name of the
global variable stored?

38

Hex

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Sections “.symtab” and “.strtab”
● “.symtab” is like a directory to

map the name of the symbols
(present inside .strtab) with
the actual content (value) of
that symbol
o E.g., for the symbol

“my_global1”, symbol table will
contain an index into the string
table “.strtab” where the name
“my_global1” is stored. It will
also contain an index to the
section header holding the
value of “my_global1”
§ What will be that section

name?

40

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Segments in Executable File
● Segments are created

by merging several
sections and each
segment contains a
specific type of
information required
for by the loader for
execution (i.e., all the
sections inside a
segment are related)

● Not available in
relocatable file

42

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Reading Materials
● Executable and Linkable Format

o https://www.cs.cmu.edu/afs/cs/academic/class/15213-f00/docs/elf.pdf
o https://man7.org/linux/man-pages/man5/elf.5.html

43

https://man7.org/linux/man-pages/man5/elf.5.html
https://man7.org/linux/man-pages/man5/elf.5.html

CSE231: Operating Systems

Lecture 02: Source code to machine code

© Vivek Kumar

Next Lecture
● Dissecting an ELF file

o It will be the topic for your Assignment-1
§ Will be released on 23rd August

44

