
CSE231: Operating Systems

Lecture 03: Linking and Loading 
of an ELF File

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in



CSE231: Operating Systems

Lecture 02: Linking and Loading of an ELF file

© Vivek Kumar

Last Lecture ● OS should be 
able to execute 
a variety of user 
applications 
requiring 
various other 
libraries (e.g., 
printf is 
provided by 
glibc library)
o Although 

programs 
could differ, 
but once 
compiled they 
are stored as 
a file in a 
standard 
format on a 
given OS (e.g. 
ELF on Linux)

o It makes the 
job of linker 
and loader 
quite easy

2 



CSE231: Operating Systems

Lecture 02: Linking and Loading of an ELF file

© Vivek Kumar

Today’s Class
● Revisiting Executable File Format (ELF)
● Dissecting the sections of an ELF

o Symbol resolution

3 



CSE231: Operating Systems

Lecture 02: Linking and Loading of an ELF file

© Vivek Kumar

Class Quiz (1/4)
● Match the following structures with their respective names 

and responsibilities

4 

(A) Elf32_Phdr (X) ELF header (1) Information for Loader

(B) Elf32_Ehdr (Y) ELF Section Header (2) Stores roadmap of ELF

(C) Elf32_Shdr (Z) ELF Program Header (3) Information for Linker



CSE231: Operating Systems

Lecture 02: Linking and Loading of an ELF file

© Vivek Kumar

Class Quiz (2/4)
● What is the meaning of “entrypoint” address in an executable?

1. Offset of SHDR table from the beginning of ELF file
2. Offset of PHDR table from the beginning of ELF file
3. Address of “main” method
4. Address of “_start” method

● Where it is stored inside the ELF binaries?
1. Program header table
2. Section header table
3. ELF header
4. Segments
5. Sections

5 



CSE231: Operating Systems

Lecture 02: Linking and Loading of an ELF file

© Vivek Kumar

Class Quiz (3/4)
● Which of these are required at the compile time and 

runtime, respectively?
1. ELF header
2. PHDR
3. SHDR
4. Segments
5. Sections

6 



CSE231: Operating Systems

Lecture 02: Linking and Loading of an ELF file

© Vivek Kumar

Class Quiz (4/4)
● Match the location shown with their respective section 

name inside the ELF file

8 

A B

C D
E

1. .bss
2. .strtab
3. .rodata
4. .text
5. .data

Symbol 
name 
only in 

this case F



CSE231: Operating Systems

Lecture 02: Linking and Loading of an ELF file

© Vivek Kumar

Summary: Portability with ELF
● Recall, one of the challenges of OS is to support portability
● Machine code is architecture dependent
● Having an architecture independent layout of object files 

helps in achieving portability
o The interpreter (loader + dynamic linker) becomes portable, and 

could have same set of steps to load executables across different 
architectures (portability)
§ Easier to change and test the tools used for manipulating object files

9 



CSE231: Operating Systems

Lecture 02: Linking and Loading of an ELF file

© Vivek Kumar

Today’s Class
● Revisiting Executable File Format (ELF)
● Dissecting the sections of an ELF

o Symbol resolution

10 



CSE231: Operating Systems

Lecture 02: Linking and Loading of an ELF file

© Vivek Kumar

How Linker Reads Section Names?
● The section header does not contains the name of its 

corresponding section
o It’s structure has a member that contains an offset into the ELF file 

where the name of this section is stored

● The names of all the sections are stored inside .shstrtab 
section

● Each section header stores the offset into the .shstrtab 
section (not the SHDR but the actual section) where the 
name of that section is stored as a null terminated string

11 



CSE231: Operating Systems

Lecture 02: Linking and Loading of an ELF file

© Vivek Kumar

Section 
containing names 

of each section

Motivation Example

12 

● It is the same motivational 
example we discussed in 
Lecture 02
o Changes shown in orange 

and red color
● We added a new section 

“S” that contains the 
name of all the sections in 
this document
o Document header contains 

the index of this particular 
section summary

o For simplicity, assume 
each slot shown in figure 
is 4 bytes (e.g., header is 
of 3x4 bytes)

● Each section summary 
now also contains offset 
(bytes) from the start of 
the content of section “S”, 
where the name is stored

nameOffset=4
numSummaries=5
summaryOffset=24

nameOffset=0
numSummaries=3
summaryOffset=12

numResearchAreas=3
researchAreasInfoOffset=56

shstrndx=2

Document header containing 
section summary

Summary-1
Summary-2
Summary-3
Summary-4
Summary-5

Summary for 
5 research 
papers in 

category-B

Summary for 3 
research papers 

in category-ASummary-1
Summary-2
Summary-3

Submission-1

A
B

nameOffset=8
numSummaries=3
summaryOffset=44

S



CSE231: Operating Systems

Lecture 02: Linking and Loading of an ELF file

© Vivek Kumar

The “.shstrtab” Section in ELF
● It is a String Table Section
● Stores the name of each 

sections in the binary
o String (NULL terminated)

● As with other sections, this 
section is also a contiguous 
chunk of memory

13 

First column is the index (hex value) 
of the first character of that section 
name. First entry starts at index 1



CSE231: Operating Systems

Lecture 02: Linking and Loading of an ELF file

© Vivek Kumar

Reading ”.shstrtab” in Plain C 
1. Open the a.out in O_RDONLY 

mode
2. Read the value of the following 

member in the Elf32_Ehdr
a. e_shoff
b. e_shentsize (fixed)
c. e_shstrndx

3. Move to the offset e_shoff + 
e_shstrndx* e_shentsize

a. Starting address of Elf32_Shdr for 
“.shstrtab”

4. Read the value of the following 
members in the Elf32_Shdr

a. sh_offset
b. sh_size

5. Move to the offset sh_offset from 
the start of the file a.out

a. Content of the “.shstrtab” starts 
from this address

b. Total content size “sh_size” bytes

14 

.shstrtab

R
el

oc
at

ab
le

 fi
le

 fi
b.

o



CSE231: Operating Systems

Lecture 02: Linking and Loading of an ELF file

© Vivek Kumar

Reading Section Names in Plain C 
6. Iterate through all 

entries in the SHDR 
one by one
o SHDR array starts at 

e_shoff
7. Find the value of 

sh_name in the SHDR 
entry

8. Name of this section 
will be inside the 
content of the section 
”.shstrtab and starting 
at the location 
sh_name
o printf (%s) at that 

location prints the 
name 

15 

.shstrtab

R
el

oc
at

ab
le

 fi
le

 fi
b.

o

.text

.bss



CSE231: Operating Systems

Lecture 02: Linking and Loading of an ELF file

© Vivek Kumar

Linker: Merges the Sections

16 

.text

.data

.bss

.rodata

.text

.data

.bss

.rodata

.text

.data

.bss

.rodata

A.o

B.o
C.out

● Relocation is the 
process of merging the 
sections and resolving 
the symbol addresses



CSE231: Operating Systems

Lecture 02: Linking and Loading of an ELF file

© Vivek Kumar

Linker: Relocation

17 

SYM Name Type Location

get_number External NULL

fib Internal Addr_A

compute Internal Addr_B

SYM Name Type Location

compute External NULL

get_number Internal Addr_C

fib.o

call-fib.o

SYM Name Location

get_number Addr_D

fib Addr_E

compute Addr_F

a.out

Compilation

Resolve symbols by linking 
fib.o and call-fib.o together

Compilation



CSE231: Operating Systems

Lecture 02: Linking and Loading of an ELF file

© Vivek Kumar

Reference Materials
● Executable and Linkable Format

o https://man7.org/linux/man-pages/man5/elf.5.html
o https://www.sco.com/developers/devspecs/gabi41.pdf
o https://wiki.osdev.org/ELF_Tutorial

18 

https://man7.org/linux/man-pages/man5/elf.5.html
https://www.sco.com/developers/devspecs/gabi41.pdf
https://wiki.osdev.org/ELF_Tutorial

