
CSE231: Operating Systems

Lecture 06: Process Creation

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE231: Operating Systems

Lecture 06: Process Creation

© Vivek Kumar

Today’s Class
● Unix architecture
● System calls
● Process creation and termination

2

CSE231: Operating Systems

Lecture 06: Process Creation

© Vivek Kumar

Return Address on Stack can be Modified

3

EBP

ESP

Top

Bottom

open()

L1: main () {
 <save_regs>
 <save(PC)>
L2: open();
 <restore(PC)>
 <restore_regs>
L3: }

Return (PC=L3) EBP

ESP

Top

Bottom

open()

Return (PC=…)

● Issues
1. If open() is a regular

method call then it’s
machine code won’t
be able to have a
foolproof check if the
calling process has
the permission to
access this file
§ The loader can

simply patch the
machine code with
the call to open() at
the runtime

2. The main() called
open(), but then
open could be
forced to return to
some malicious
process call stack

CSE231: Operating Systems

Lecture 06: Process Creation

© Vivek Kumar

Unix Architecture ● A major goal of OS is to support
portability across various architecture

● A layered approach helps in achieving
this goal as the innermost layer is only
one that has to interact with the
hardware
o This innermost layer is called as OS

kernel
o It is relatively small, controls the hardware

resources, and provides an environment
under which programs can run

● System call is the interface to the
kernel (e.g., read, open, etc.)

● Library functions are are built on top of
system calls that applications can use
o E.g., C-library function malloc uses sbrk

system call, open(), etc.
● Shell is a command line interpreter that

reads user input and execute
commands
o E.g., bash, csh, etc.

4

Recall the analogy discussed in
Lecture 01. Who interacts with
the hardware in that analogy?

CSE231: Operating Systems

Lecture 06: Process Creation

© Vivek Kumar

Protection Rings ● Protection rings are hardware
supported mechanisms used
by the OS for protection of data
and functionality
o E.g., x86 supports four

protection levels (0-3)
o Level-0 is called as kernel

mode (supervisor mode) and
Level-3 is user mode

● Unix-like OS execute user
applications, shell, and library
functions in the user mode
whereas kernel/syscalls in the
kernel mode

5

CSE231: Operating Systems

Lecture 06: Process Creation

© Vivek Kumar

Today’s Class
● Unix architecture
● System calls
● Process creation and termination

6

CSE231: Operating Systems

Lecture 06: Process Creation

© Vivek Kumar

Interrupts: Gateway to the Kernel Mode
● Interrupts are signals to the CPU that something special has to

happen
o INT instruction on x86 to generate an interrupt
o Interrupts are handled only by the kernel

● Three kinds of interrupts
o Exceptions

§ Attempt to access invalid memory address, divide by zero, etc.
• Covered in next lecture

o System calls (software interrupt) – today’s focus
o Hardware interrupt

§ Signal generated by some hardware device. E.g., disk can generate an interrupt
when a block of memory has been read and is ready to be retrieved

● As per Unix terminology, “interrupts” refer to the hardware interrupts,
whereas “trap” refers to software interrupts (e.g., some special type of
exceptions and all system calls)

7

CSE231: Operating Systems

Lecture 06: Process Creation

© Vivek Kumar

libc Syscall Wrapper v/s Direct Syscall
● Code portability across different OS versions
● Easy to use APIs simplify coding experience as compared

to using raw system call APIs
● Error handling support

8

CSE231: Operating Systems

Lecture 06: Process Creation

© Vivek Kumar

Steps for Making a System Call (1/5)

9 Figure source: from the book “Understanding the Linux Kernel”

● At a high level the
steps are as
follows:
1. Save registers in

kernel mode stack
2. Handle the system

call by invoking a
corresponding
system call service
routine

3. Restore the
registers and
switch back into
user mode

CSE231: Operating Systems

Lecture 06: Process Creation

© Vivek Kumar

Steps for Making a System Call (2/5)
● Each system call has a

unique number associated
that is declared inside the
file unistd.h

● Store this number in the
EAX register

● Process is still executing
inside user space

10

EBP

ESP

User call
stack

Bottom

Return (PC=L3)
libc open()

Trap

Find the unique number
associated with the system

call and store in EAX register

CSE231: Operating Systems

Lecture 06: Process Creation

© Vivek Kumar

Steps for Making a System Call (3/5)
● Kernel sets up Interrupt

Descriptor Table (IDT) at
boot time whose address
is stored in IDT register
(IDTR). Total 256 entries in
IDT on x86

● Each IDT index has the
address of some interrupt
handler

● 128th entry associated with
the system call handler

11

EBP

ESP

User call
stack

Bottom

Return (PC=L3)
libc open()

.........

0 1 128
I
D
T
R

IDT

User
Space

INT 0x80

Kernel
Space

Trap

CSE231: Operating Systems

Lecture 06: Process Creation

© Vivek Kumar

Steps for Making a System Call (4/5)
● Switch to kernel stack

o What should be the first
step?

● Save registers on kernel
stack. These registers are
currently holding details to
return back to user stack

● Look up the syscall
number from EAX and
process the syscall

12

User call
stack

Bottom

Return (PC=L3)
libc open()

User
Space

Kernel
Space

Bottom

syscall(int ID) {
 switch(ID) {
 case 5:
 …..
 }
 }

EBP

ESP

User Context Saved

Trap

CSE231: Operating Systems

Lecture 06: Process Creation

© Vivek Kumar

Steps for Making a System Call (5/5)
● For returning to user call

stack, first pop the user
registers from kernel stack
and store them back into
respective CPU registers
o Return back to user call stack in

the user mode
§ Protection level-3

13

EBP

ESP

User call
stack

Bottom

Return (PC=L3)
libc open()

User
Space

CSE231: Operating Systems

Lecture 06: Process Creation

© Vivek Kumar

Today’s Class
● Unix architecture
● System calls
● Process creation and termination

14

CSE231: Operating Systems

Lecture 06: Process Creation

© Vivek Kumar

Next Lecture
● Process life lessons (contd.) and inter process

communication

15

