
CSE231: Operating Systems

Lecture 07: Process Creation and
Termination

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE231: Operating Systems

Lecture 07: Process Creation and Termination

© Vivek Kumar

Last Lecture

● Protection rings (kernel and User
mode) in Unix-like OS

● Interrupts and system call

1

CSE231: Operating Systems

Lecture 07: Process Creation and Termination

© Vivek Kumar

Today’s Class
● Process’s life lessons

2

CSE231: Operating Systems

Lecture 07: Process Creation and Termination

© Vivek Kumar

The Shell ● It is the first user process
created by the OS after
the bootup

● It runs in the user mode
but it can create more
processes by using
system call

● Its main job is to execute
user commands
o Recall how we launched ./fib

executable in previous
lecture

3

CSE231: Operating Systems

Lecture 07: Process Creation and Termination

© Vivek Kumar

Shell Pseudocode (1/2)

● Shell runs in an infinite loop and reads the user input to
execute

● Should cease execution if it was unable to execute user
command

4

void shell_loop() {
 int status;
 do {
 printf(“iiitd@possum:~$ “);
 char* command = read_user_input();
 status = launch(command);
 } while(status);
}

CSE231: Operating Systems

Lecture 07: Process Creation and Termination

© Vivek Kumar

Shell Pseudocode (2/2)

● The launch method accepts the user input (command
name along with arguments to it)

● It will create a new process that would execute the user
command and return execution status

5

int launch (char *command) {
 int status;
 status = create_process_and_run(command);
 return status;
}

CSE231: Operating Systems

Lecture 07: Process Creation and Termination

© Vivek Kumar

A Process’s Life Lessons
1. Processes can have children
2. Children should be obedient to their parent
3. Parent must follow the steps for good parenting
4. Children should not run their family business

6

CSE231: Operating Systems

Lecture 07: Process Creation and Termination

© Vivek Kumar

Creating Child Processes (1/3)
● fork is a system call used for creating

a new process
● Called once, but returns twice!

o Return value in child process is zero,
whereas child’s process PID is returned
in parent process

● It creates a replica of the parent
process
o Both the child and parent process are

going to execute the same code with a
minute difference

o Copy-on-Write (COW) – Initially, both
parent and child process have read-only
access to parent’s address space.
Whichever process attempts a write on a
memory page in parent’s address space,
it would get a copy of that page (lazy
copy)
§ What about opened file descriptors?

7

int create_process_and_run(char* command) {
 int status = fork();
 if(status < 0) {
 printf(“Something bad happened\n”);
 } else if(status == 0) {
 printf(“I am the child process\n”);
 } else {
 printf(“I am the parent Shell\n”);
 }

 return 0;
}

CSE231: Operating Systems

Lecture 07: Process Creation and Termination

© Vivek Kumar

Creating Child Processes (2/3)
● Which of the two printfs

would get printed first?
● The output is non-

deterministic as the OS can
decide on its own which one
of the child or parent
process should be in the
“running” queue
o Imagine there is single CPU
o Will be discussed in details in

later lectures on process
scheduling

8

int create_process_and_run(char* command) {
 int status = fork();
 if(status < 0) {
 printf(“Something bad happened\n”);
 } else if(status == 0) {
 printf(“I am the child process\n”);
 } else {
 printf(“I am the parent Shell\n”);
 }

 return 0;
}

CSE231: Operating Systems

Lecture 07: Process Creation and Termination

© Vivek Kumar

Creating Child Processes (3/3)
● What value of the global variable will be

printed?
● Although, the child is replica of the parent

process, it has its own address space
(heap, call stack, etc.) and registers
o “Replica” here means both child and

parent will run the exact same executable
a.out immediately after calling fork (unless
child and parent path are made separate
as shown – if statement)

● Although we have made the parent to
sleep for 2 seconds, it is not guaranteed
that this duration is adequate for the child
to move into running queue and complete
its execution

● Inter-process communication is required
for the updated global value to be seen by
the parent
o Next lecture!

9

int global=0;
int create_process_and_run(char* command) {
 int status = fork();
 if(status < 0) {
 printf(“Something bad happened\n”);
 } else if(status == 0) {
 printf(“I am the child process\n”);
 global++;
 } else {
 printf(“I am the parent Shell\n”);

 }
 printf(“Global value = %d\n”,global);

 return 0;
}

sleep(2)

CSE231: Operating Systems

Lecture 07: Process Creation and Termination

© Vivek Kumar

A Process’s Life Lessons (contd.)
1. Processes can have children
2. Children should be obedient to their parent
3. Parent must follow the steps for good parenting
4. Children should not run their family business

10

CSE231: Operating Systems

Lecture 07: Process Creation and Termination

© Vivek Kumar

The Obedient Child
● exit syscall allows to send a

specific termination code (exit
status) from a child process to the
parent upon termination
o “signal” is sent to the parent (inter-

process communication)
o In case of abnormal termination of

child, the exit status is generated
and send by the kernel

● exit carries out process cleanup –
reclaiming memory, flushes
buffers, closing fds, etc.

● But how the parent can get the
exit status (next slide)?
o Remember child is not going to

return to the parent just like a callee
method returns to a caller method

11

int create_process_and_run(char* command) {
 int status = fork();
 if(status < 0) {
 printf(“Something bad happened\n”);
 } else if(status == 0) {
 printf(“I am the child process\n”);
 exit(0);
 } else {
 printf(“I am the parent Shell\n”);
 }

 return 0;
}

CSE231: Operating Systems

Lecture 07: Process Creation and Termination

© Vivek Kumar

The Act of Good Parenting
● wait and waitpid allows the parent

process to block until the child
process terminates
o wait will block only for the first child,

whereas waitpid can be used for a
specific child

o Returns the child’s PID
o Used for retrieving exit status from child

● Will there be deterministic execution
of printfs from parent and child
processes (notice there is no sleep)?

● Good parents avoid making their
child as Zombies or Orphan
o Child is zombie when it has terminated

but has its exit code remaining in the
process table as it is waiting for the
parent to read the status

o Orphaned children outliving their
parent’s lifetime are adopted by the
mother-of-all-processes (init)

12

int create_process_and_run(char* command) {
 int status = fork();
 if(status < 0) {
 printf(“Something bad happened\n”);
 exit(0);
 } else if(status == 0) {
 printf(“I am the child (%d)\n”,getpid());
 } else {
 int ret;
 int pid = wait(&ret);
 if(WIFEXITED(ret)) {
 printf(“%d Exit =%d\n”,pid,WEXITSTATUS(ret));
 } else {
 printf(“Abnormal termination of %d\n”,pid);
 }
 printf(“I am the parent Shell\n”);
 }
 return 0;
}

CSE231: Operating Systems

Lecture 07: Process Creation and Termination

© Vivek Kumar

An Act of Kindness From a Bad Parent
● There is a really bad parent who

don’t have a patience for good
parenting
o Get grandchildren and let them do

the real work instead of the
immediate children who will suffer
a premature death

● The immediate child’s only job is
to get an offspring and die a
quick death
o The child should call _exit to

ensure the offspring can inherit it’s
resources (some kindness)

● The mother-of-all process (init)
will kindly adopt this process as
her own child by issuing a wait
call
o No more Zombie!

13

int create_process_and_run(char* command) {
 int status = fork();
 if(status < 0) {
 printf(“Something bad happened\n”);
 exit(0);
 } else if(status == 0) {
 int status2 = fork();
 if(status2<0) printf(“Kindness failed\n”);
 else if (status2 == 0) {
 printf(“Child will not live like Zombie\n”);
 } else {
 _exit(0);
 }
 } else {
 printf(“I am the parent Shell\n”);
 }
 return 0;
}

CSE231: Operating Systems

Lecture 07: Process Creation and Termination

© Vivek Kumar

Child Should Not Run Family Business
● Main goal for creating a child

process is to let it live its own
free life without depending on its
parent
o The child won’t let go off the

parent’s property (code path) until
its forced to call exec

● An exec calls the OS loader
internally that loads the ELF file
with its command line argument
as specified in the argument list

● There are seven different
versions of exec which are
collectively referred as exec
function

14

int create_process_and_run(char* command) {
 int status = fork();
 if(status < 0) {
 printf(“Something bad happened\n”);
 exit(0);
 } else if(status == 0) {
 printf(“I am the child process\n”);
 char* args[2] = {“./fib”, “40”};
 execv(args[0], args);
 printf(“I should never print\n”);
 } else {
 printf(“I am the parent Shell\n”);
 }

 return 0;
}

CSE231: Operating Systems

Lecture 07: Process Creation and Termination

© Vivek Kumar

exec Behind the Curtain
● It’s only job is to construct the

process’s address space
o Unload current process address space

(segments)
o Read ELF file from the disk
o Create the user part of the address

space lazily
§ E.g., space for .data will be allocated

only after some global variable is
accessed during program execution
from the .text segment

● Note that PID remains the same after
the process calls exec

15

.data
Heap

Stack

.text 0
a.out

CSE231: Operating Systems

Lecture 07: Process Creation and Termination

© Vivek Kumar

Next Lecture
● Inter-process communication

16

