
CSE231: Operating Systems

Lecture 08: Inter-process
Communication in Shared

Memory
Vivek Kumar

Computer Science and Engineering
IIIT Delhi

vivekk@iiitd.ac.in

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

Last Lecture

1

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

Today’s Class
● Inter-process communication

o Signals
o Pipes
o Shared memory

2

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

Inter-Process Communication
● Recall, forked

process calls an
exec after which
it has its own
address space
that is not shared
with the parent

● IPC mechanisms
to share
information
between
processes

3

Shared memory

Process-1 Process-2

Process-1 Process-2Pipe

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

Points to Ponder ● What happens when we press the
following key combination on a shell
that is running some program
o Ctrl-c

§ Process simply terminates even though
it was executing some instruction inside
the .text segment

o Ctrl-z
§ Process moves to background (you can

get it back to foreground using “fg”)
o How come these actions are happening

even though the program did not have
any code to demonstrate the above
mentioned behavior

● How does a child process that died
inform about its fate to its parent?

● What happens when a program
attempts to access an invalid memory
address?

4

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

Signals – A Limited Form of IPC
● Signals (interrupts) are technique used by the OS to communicate with a

process
● Every signal has a name that has a unique number assigned

o Ctrl-c and Ctrl-z generates hardware interrupt from the keyboard that is handled by
the OS by sending SIGINT (2) and SIGSTOP (20) signal, respectively, to the
running process

● Each signal type has a default handler
o A program can install its own handler for signals of any type

§ Except SIGKILL (default action is to exit the process) and SIGSTOP (default action is to
suspend the process)

● States
o Generated – due to some event
o Delivered – received by the process
o Blocked – process has blocked the signal
o Pending – to be delivered
o Caught – action associated with signal has been taken by the process

5

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

Signal Delivery and Handling
● Process can use sigprocmask

function to make changes to its
signal mask (member in task_struct)
if it wants to temporarily block a set
of signals (not all signals can be
blocked, e.g., SIGKILL and
SIGSTOP)

● User can create his own signal
handler function (we will see soon)

● Signal name has prefix “SIG”. Some
of the signals that you can easily
come across are:
o SIGINT (ctrl-c), SIGQUIT (ctrl-\),

SIGSTOP (ctrl-z), SIGTRAP
(breakpoint), SIGSEV (segmentation
fault), SIGTERM (process termination),
SIGCHLD (child stopped/terminated),
SIGFPE (floating point exception), etc.

6

Signal generated

Signal received
by the process

Process
mask?

Signal
pending

Ignore signal

Default action
(terminate, dump, stop,

ignore, and continue)
User’s chosen

action

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

Catching the Signal ● In the absence of user signal
handler, signal is handled in
kernel mode, otherwise it is
handled in the user mode

● Process switches into kernel
mode after receiving a non-
blocking signal

● Kernel handle the signal by first
setting up stack frame on user
stack (save context)

● Control is passed to user stack
and user signal handler is
executed

● Control is returned back into
kernel mode which restores the
user stack to its original state to
resume the execution of the
program
o sigreturn system call used to

restore process state

7 Figure source: from the book “Understanding the Linux Kernel”

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

Programming Signals

● sigaction is used to change the default action associated with a signal
o Except SIGKILL and SIGSTOP

● User can assign his own signal handler method that would get invoked when the assigned signal
is received by the process

● Only asynchronous safe functions should be called inside signal handler
https://man7.org/linux/man-pages/man7/signal-safety.7.html

8

static void my_handler(int signum) {
 static int counter = 0;
 if(signum == SIGINT) {
 char buff1[23] = “\nCaught SIGINT signal\n”;
 write(STDOUT_FILENO, buff1, 23);
 if(counter++=1) {
 char buff2[20] = “Cannot handle more\n”;
 write(STDOUT_FILENO, buff2, 20);
 exit(0);
 }
 } else if (signum == SIGCHLD) {
 char buff1[23] = “Caught SIGCHLD signal\n”;
 write(STDOUT_FILENO, buff1, 23);
 }
}

int main() {
 struct sigaction sig;
 memset(&sig, 0, sizeof(sig));
 sig.sa_handler = my_handler;
 sigaction(SIGINT, &sig, NULL);
 sigaction(SIGCHLD, &sig, NULL);
 int n;
 while(1) {
 printf(“Input i: \n”);
 scanf(“%d”,&n);
 if(fork()==0) {
 printf(“Fib(%d) = %d\n”,n,fib(n));
 exit(0);
 }
 else wait(NULL);
 }
 return 0;
}

Why Fib(20) is
calculated twice?

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

Today’s Class
● Inter-process communication

o Signals
o Pipes
o Shared memory

9

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

IPC Using Pipes

● Pipes (analogous to water pipe) is a unidirectional stream of data flowing
from a source process to a destination process
o Kernel buffer exposed to processes as a pair of file descriptors (readable end and

writable end). Default buffer size is 16 pages (16x4096 bytes)
o Data delivered in the same order as sent
o Uses blocking IO and the writer process will block if the pipe is full

● We use it frequently on Shell
o Better than using temporary files as pipes automatically clean up themselves unlike

files that must be explicitly removed using the “rm” command on Shell

10

Process-1 Process-2Pipe

Processes must be running
on the SAME machine

cat fib.c grep
writePipe wc -lPipe

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

Programming With pipe
● pipe expects an int array of size

two only for a readable and
writable file descriptor

● Reader and writer processes must
close the pipe end they are not
going to use
o It is very important as fork

duplicates the open file descriptors
in the parent process

● What would happen if the child
sleeps before writing to the pipe,
as the parent has already issued
the read?

11

int main() {
 int fd[2], status;
 pipe(fd);
 if(fork() == 0) {
 /* Child process */
 close(fd[0]);
 char buff[] = “Hello my dear good Parent”;

 write(fd[1], buff, sizeof(buff));
 exit(0);
 }
 /* Parent process */
 close(fd[1]);
 char buff[100];
 read(fd[0], buff, sizeof(buff));
 printf(“My obedient child says: %s\n”, buff);
 wait(NULL);
 return 0;
}

sleep(2);

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

Programming With pipe and dup
● dup2 can be used to

duplicate a file descriptor
o E.g., duplicate one of the end

of the pipe as STDOUT or
STDIN
§ Duplicating to STDOUT will

cause printf to print to the
pipe instead of the STDOUT

● Used by the Shell when we
pipe the output of one
command to another
command

12

int main() {
 int fd[2], status;
 pipe(fd);
 if(fork() == 0) {
 /* Child process */
 close(fd[0]);
 dup2(fd[1], STDOUT_FILENO);
 char buff[] = “Hello my dear good Parent”;
 printf(“%s”, buff);
 exit(0);
 }
 /* Parent process */
 close(fd[1]);
 dup2(fd[0], STDIN_FILENO);
 char buff[100];
 read(fd[0], buff, sizeof(buff));
 printf(“My obedient child says: %s\n”, buff);
 wait(NULL);
 return 0;
}

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

Last Lecture ● Child process should
call exit system call
before terminating to
pass its exit status to
the parent process
o Parent can retrieve it

by calling wait
● Zombies and orphan

processes
● The exec system call
● IPC using signaling
● IPC using pipe and

dup
13

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

Today’s Class
● Inter-process communication

o Signals
o Pipes
o Shared memory

14

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

Array Sum Program
● A simple program to

calculate the sum of all
the elements inside a
huge array

● How to shorten the
execution time for
calculating the sum for
a very big array?

15

int main() {
 int A[SIZE]; //initialized
 int sum=0;
 for(int i=0; i<SIZE; i++) sum += A[i];
 return 0;
}

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

Array Sum Program ● We can fork a child and let the parent
and child calculate the sum of left and
right half of the array, respectively

● The problem(s)
o How the child and parent would

communicate their partial results to get the
total sum?
§ Can the child pass the partial sum as its

exit code?
• exit API accepts only “int” type

parameter. We cannot pass the sum of
“double” type array, etc.

o Can we setup a pipe between the parent
and child?
§ Yes, but what if there are several

children to improve the execution time
further? We will have to use multiple
pipes and keep track of them (closing
fds differently at child v/s parent, etc.)

o What if its some other kind of program,
such as vector addition or matrix
multiplication?
§ Three arrays (or matrices) would

require accesses by child and parent

16

int main() {
 int A[SIZE]; //initialized
 int sum1=0, sum2=0;
 if(fork() == 0) {
 for(int i=SIZE/2; i<SIZE; i++) sum1 += A[i];
 exit(0);
 }
 for(int i=0; i<SIZE/2; i++) sum2 += A[i];
 wait(NULL);
 return 0;
}

Can we do sum1 + sum2 in
any of the two process to

get the total sum?

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

IPC Using Signals and Pipes
● Processes running inside a single machine can use

simple IPC techniques such as signaling and pipes
● Issues with signaling

o Limited form of IPC
o Requires help from OS for every signaling instances
o Transition between user space and kernel space

(overheads)
● Issues with pipes

o Limited buffer size (although significantly better than
signaling)

o Use of system calls for every communication
§ Transition between user space and kernel space (overheads)

o One way communication
o Blocking communication

17

Kernel Space

User Space

P1 P2

Kernel Space

User Space

P1 P2

Process
signal

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

IPC Using POSIX Shared Memory
● Shared memory is the fastest form of IPC in a single

machine in which processes can asynchronously
write to a shared region of memory without the need
for switching to kernel space
o User specified memory size

● Access to the shared memory is achieved as follows
1. Create and open a new shared memory object using

shm_open system call in the parent process
2. Set the desired size for the newly created shared

memory region using ftruncate
3. Map the shared memory region into the process’s

address space using mmap (parent process calls
mmap that gets shared in child’s address space after
fork)

4. Both child and the parent processes un-maps the
shared memory from their address space upon
completion by using munmap system call, followed by
closing the file descriptor for the shared memory object
(close system call)

5. Parent deletes the shared memory object by using
shm_unlink

● Can be used for parallel programming!
18

Kernel Space

User Space

P1 P2

SHM

User Space

Kernel Space

P1 P2

SHM

SHM SHM

P1 P2
SHM

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

● We will create a
shared memory
segment of our
own type shm_t
that contains the
array and a
variable sum to
store the partial
result

19

Array Sum Program
int main() {
 shm_t* shm = setup();

if(fork()==0) {
int local=0;
for(int i=0; i<SIZE/2; i++) local += shm->array[i];
shm->sum1 += local;

 cleanup_and_exit();
 } else {
 int local=0;

for(int i=SIZE/2; i<SIZE; i++) local += shm->array[i];
shm->sum2 += local;
wait(NULL);

}
int total = shm->sum1 + shm->sum2;

 cleanup();
 return 0;
}

typedef struct shm_t {
 int A[SIZE];
 int sum1;
 int sum2;
} shm_t;

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

Array Sum Program

20

int main() {
 shm_t* shm = setup();

if(fork()==0) {
int local=0;
for(int i=0; i<SIZE/2; i++) local += shm->array[i];
shm->sum1 += local;

 cleanup_and_exit();
 } else {
 int local=0;

for(int i=SIZE/2; i<SIZE; i++) local += shm->array[i];
shm->sum2 += local;
wait(NULL);

}
int total = shm->sum1 + shm->sum2;

 cleanup();
 return 0;
}

typedef struct shm_t {
 int A[SIZE];
 int sum1;
 int sum2;
} shm_t;

● The three steps for setting
up a shared memory
segment are:
o Creating a shared memory

object (shm_open)
o Assigning a size for the

shared memory object
(ftruncate)

o Mapping the shared memory
into the process’s address
space (mmap)

● The three steps in cleanup
are:
o Removing the mapping of

shared memory from
process’s address space

o Closing the file descriptor for
the shared memory object

o Deleting the shared memory
object

1) shm_open (...)
2) ftruncate (...)
3) shm = mmap (...)

1) munmap (shm, ...)
2) close (...)
3) shm_unlink (...)

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

Array Sum Program
● Parent process will fork

children that gets a copy of the
parent’s address space
(inherits the file descriptor and
shared memory object from
the parent)

● Child process also carries out
cleanup similar to parent
except for calling shm_unlink
that is called only by the
parent

● If parent process fail to call
shm_unlink, then the
shm_open will fail the next
time (unless you change the
name of the memory region)

● Child must also call exit in
their cleanup call
o Why?

21

int main() {
 shm_t* shm = setup();

if(fork()==0) {
int local=0;
for(int i=0; i<SIZE/2; i++) local += shm->array[i];
shm->sum1 += local;

 cleanup_and_exit();
 } else {
 int local=0;

for(int i=SIZE/2; i<SIZE; i++) local += shm->array[i];
shm->sum2 += local;
wait(NULL);

}
int total = shm->sum1 + shm->sum2;

 cleanup();
 return 0;
}

typedef struct shm_t {
 int A[SIZE];
 int sum1;
 int sum2;
} shm_t;

1) munmap (shm, ...)
2) close (...)
3) exit(0)

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

Array Sum Program (Version 1)
● Both child and the

parent process
calculate the partial
sum independently

● Parent process
combine the partial
sum from the child
to its own
calculation to get
the total
o Done only after wait

22

int main() {
 shm_t* shm = setup();

if(fork()==0) {
int local=0;
for(int i=0; i<SIZE/2; i++) local += shm->array[i];
shm->sum1 += local;

 cleanup_and_exit();
 } else {
 int local=0;

for(int i=SIZE/2; i<SIZE; i++) local += shm->array[i];
shm->sum2 += local;
wait(NULL);

}
int total = shm->sum1 + shm->sum2;

 cleanup();
 return 0;
}

typedef struct shm_t {
 int A[SIZE];
 int sum1;
 int sum2;
} shm_t;

CSE231: Operating Systems

Lecture 08: IPC in shared memory

© Vivek Kumar

Next Lecture
● Semaphores

23

