
CSE231: Operating Systems

Lecture 09: Semaphores

Vivek Kumar
Computer Science and Engineering

IIIT Delhi
vivekk@iiitd.ac.in

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Last Lecture

1

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Today’s Class
● Semaphores for process synchronization

o Mutual exclusion
o Critical section

● Producer consumer problem

2

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Array Sum Program (Version 1)
● Both child and the

parent process
calculate the partial
sum independently

● Parent process
combine the partial
sum from the child
to its own
calculation to get
the total
o Done only after wait

3

int main() {
 shm_t* shm = setup();

if(fork()==0) {
int local=0;
for(int i=0; i<SIZE/2; i++) local += shm->array[i];
shm->sum1 += local;

 cleanup_and_exit();
 } else {
 int local=0;

for(int i=SIZE/2; i<SIZE; i++) local += shm->array[i];
shm->sum2 += local;
wait(NULL);

}
int total = shm->sum1 + shm->sum2;

 cleanup();
 return 0;
}

typedef struct shm_t {
 int A[SIZE];
 int sum1;
 int sum2;
} shm_t;

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Array Sum Program (Version 2)
● We want more than

one process to
participate in the
parallel array sum
computation

● Children update the
global sum in the
shared memory
region
o Is is correct?

§ Race condition!
§ All children are

updating the
same shared
global variable
sum

4

int main() {
 shm_t* shm = setup();

sem_init(&shm->sem, 1, 1);
int chunks = SIZE/NPROCS;
for(int i=0; i<NPROCS; i++) {

if(fork()==0) {
int local=0;
int start = i*chunks;
int end = start+chunk;
for(int i=start; i<end; i++) local += shm->array[i];
sem_wait(&shm->mutex);
shm->sum += local;
sem_post(&shm->mutex);

 cleanup_and_exit();
 }
 }
 for(int i=0; i<NPROCS; i++) wait(NULL);
 cleanup();
 return 0;
}

typedef struct shm_t {
 int A[SIZE];
 int sum;
 sem_t mutex;
} shm_t;

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Race Condition

5

● Final value of the sum will not be correct as there is a race
between reading and writing the counter “sum” by multiple
processes

● The line of code shown above is called as critical section
o Critical section is a line or block of code that access shared

modifiable data or resource that should be operated on by only
one process at a time

shm->sum += local;

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Real World Accidents From Race Conditions

● Therac-25 radiation overdose in 1980s
o Radiation overdose as the software failed to detect when the operator finished editing due to race

condition. It resulted in several deaths and severe injuries
● Northeastern blackout of 2003

o Race conditions failed to notify the operators about faults occurring in the power grid system
● NASDAQ software glitch in 2012

o A race condition prevented the delivery of order Facebook IPO confirmations, so those orders
were re-submitted repeatedly

6

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Mutual Exclusion

7

● Mutual exclusion is a property that ensures that there is no
race condition by executing the critical section by a single
process only at any given time
o One way to achieve it is by using locks
o We will revisit this topic during lectures on concurrency

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Visualizing Mutual Exclusion

8

shm->sum+=local;

● Each process must
acquire a lock before
entering a critical
section

● A “Lock” should allow
only one process to
enter the critical section

● Rest all processes
should queue (wait) to
get the key

● The process acquiring
the lock must release it
when exiting the critical
section

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Naïve Implementation of a Lock (1/3)
● Goal: achieving mutual exclusion

over a critical section when multiple
processes are going to execute
that critical section
o Let us assume a uniprocessor

system for simplicity
● A naïve way is to let a process

complete the execution of a critical
section without interrupting it

● Any issues here?
o The sleeping process has disabled

process scheduling!

9

Acquire() {
 Disable interrupts
 if (value == BUSY) {
 sleep
 // Process moved to wait queue

 }
 value = BUSY
 Enable interrupts
}

Release() {
 Disable interrupts
 if (anyone in wait queue) {
 Move a process into ready queue
 }
 value = FREE
 Enable interrupts
}

int value = FREE //inside SHM

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Naïve Implementation of a Lock (2/3)
● Solution?

o The sleeping process must enable
interrupts before going to sleep and
must disable it after coming out of
sleep

10

int value = FREE //inside SHM

Acquire() {
 Disable interrupts
 if (value == BUSY) {
 Enable interrupts and sleep
 // Process moved to wait queue
 Disable interrupts
 }
 value = BUSY
 Enable interrupts
}

Release() {
 Disable interrupts
 if (anyone in wait queue) {
 Move a process into ready queue
 }
 value = FREE
 Enable interrupts
}

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Naïve Implementation of a Lock (3/3)
● Any issues?

o Process acquiring the lock will
enjoy an everlasting vacation on
the CPU

● Critical section must be as small
as possible

11

Release() {
 Disable interrupts
 if (anyone in wait queue) {
 Move a process into ready queue
 }
 value = FREE
 Enable interrupts
}

int value = FREE //inside SHM

Acquire() {
 Disable interrupts
 if (value == BUSY) {
 Enable interrupts and sleep
 // Process moved to wait queue
 Disable interrupts
 }
 value = BUSY
 Read a story book?
 Enable interrupts
}

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Atomic Read-Modify-Write Instructions
● Process updating a variable will have to first “Read” (R) the variable,

followed by “Modify” (M) and finally “Store” (S) the updated value so as
to be visible to other processes
o Any issues?

§ P1(Var)àR; P2(Var)àM; P3(Var)àS
• Overlapping RMS!

● How to fix using hardware support?
o Hardware can combine RMS as a single instruction for a specific type of

variables (Atomic)
o Atomic instructions read a value from memory and write a new value atomically

§ E.g., compare and swap (CAS), atomic increment/decrement, atomic load/store etc.
§ Hardware is responsible for implementing this correctly

o User code can easily access it both on a uniprocessor and multiprocessors
systems

12

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Mutual Exclusion using CAS (1/2)
● CAS atomically checks if the

value is FREE and set it to BUSY
if currently FREE
o Returns true, otherwise value

remains unchanged and
returns false

● Any issues?
o Busy waiting!

§ Process wastes CPU cycles
carrying out constant checks
until the lock is free

o What should the process do
when it finds the value!=FREE?

13

Acquire() {
 while (CAS(value, FREE, BUSY) != true);
}

Release() {
 value = FREE
}

int value = FREE //inside SHM

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Mutual Exclusion using CAS (2/2)
● Forcing the process to sleep

will move it to the wait queue
● Any issues?

o Sleep for how long?

● Desirable scenario
o If any process fails to acquire

the lock then it goes to sleep
but is awakened by the
process calling the release
§ Can be achieved using

Semaphores!
14

Acquire() {
 while (CAS(value, FREE, BUSY) != true) {
 sleep();
 }
}

Release() {
 value = FREE
}

int value = FREE //inside SHM

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Semaphores ● A semaphore is an object with an
integer value (user initialized)
that could be manipulate with:
o sem_wait

§ value = value -1 (atomically!)
§ Blocking (sleep) if value < 0,

otherwise non-blocking
o sem_post

§ Non-blocking API
§ value = value +1 (atomically!)
§ If there are one more processes

blocked inside sem_wait then
wake any one of them

o Helps in achieving mutual
exclusion over a critical section
§ Uses atomic instructions

internally
15

Process-T1 Process-T2

Process-T1 Process-T2

Source: OSTEP Book

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Array Sum Program (Version 2)
● We used a binary

semaphore to
synchronize the
accesses on the
sum variable

● Semaphore
helped in
achieving mutual
exclusion over the
critical section
o No more race

condition!
16

int main() {
 shm_t* shm = setup();

sem_init(&shm->mutex, 1, 1);
int chunks = SIZE/NPROCS;
for(int i=0; i<NPROCS; i++) {

if(fork()==0) {
int local=0;
int start = i*chunks;
int end = start+chunk;
for(int i=start; i<end; i++) local += shm->array[i];
sem_wait(&shm->mutex);
shm->sum += local;
sem_post(&shm->mutex);

 cleanup_and_exit();
 }
 }
 for(int i=0; i<NPROCS; i++) wait(NULL);
 cleanup();
 return 0;
}

typedef struct shm_t {
 int A[SIZE];
 int sum;
 sem_t mutex;
} shm_t;

1) munmap (shm, ...)
2) close (...)
3) shm_unlink (...)
4) sem_destroy

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Measuring the Parallel Performance?
● Speedup is used to denote the performance improvement

by using multiple processes
o Speedup = Tserial/Tparallel

17

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Today’s Class
● Shared memory

o Introduction to parallel computing
o Semaphores for process synchronization

● Producer consumer problem

18

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

The Producer Consumer Problem

19

● The Simpsons story
o Homer is fond of eating cookies

every time
o Marge is super busy with her

baby and so cannot bake a lot of
cookies once

o The cookie jar is the place to
store cookies shared between
Marge and Homer

o Homer picks a cookies from
cookie jar if available and then
waits for Marge to prepare one
for him

o Marge waits for Homer to eat the
cookie from cookie jar and
prepares one if no cookie is
available

● We need to synchronize between
transactions, for example, the
producer-consumer scenario
described above (or bounded
buffer problem)

Process-A Process-BShared
memory

Picture source: Google images

Transactions in
shared memory

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

The Producer Consumer Problem

20

● The Simpsons story
o Homer is fond of eating cookies

every time
o Marge is super busy with her

baby and so cannot bake a lot of
cookies once

o The cookie jar is the place to
store cookies shared between
Marge and Homer

o Homer picks a cookies from
cookie jar if available and then
waits for Marge to prepare one
for him

o Marge waits for Homer to eat the
cookie from cookie jar and
prepares one if no cookie is
available

● We need to synchronize between
transactions, for example, the
producer-consumer scenario
described above (or bounded
buffer problem)

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

The Producer Consumer Problem
● We will create a shared

memory segment of the
type cookiejar_t that
contains the “cookie”
number and a flag “empty”
to indicate the availability of
a cookie in the cookie jar

● Setup and cleanup of
shared memory region
works exactly as described
in earlier slides

21

typedef struct cookiejar_t {
 int cookie;
 int empty;
} cookiejar_t;

cookiejar_t* cookiejar;

int main() {
 cookiejar = setup();

cookiejar->empty=1;
 if(fork() == 0) { homer(); }
 if(fork() == 0) { marge(); }
 wait(NULL); // wait for Homer process
 wait(NULL); // wait for Marge process
 cleanup();
 return 0;
}

1) shm_open (...)
2) ftruncate (...)
3) mmap (...)

1) munmap (...)
2) close (...)
3) shm_unlink (...)

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

The Producer Consumer Problem

● I tried running the program
several times but Homer
was simply not eating any
cookie despite the fact that
Marge had in fact baked
one for him..
o What went wrong?

22

void homer() {
 for(int i=0; i<5; i++) {
 while(cookiejar->empty) {
 /*Loop endlessly*/
 }
 printf(“Homer ate Cookie-%d\n”, cookiejar->cookie);
 cookiejar->empty = 1;
 }
 cleanup_and_exit();
}

void marge() {
 for(int i=0; i<5; i++) {
 while(!cookiejar->empty) {
 /*Loop endlessly*/
 }
 printf(“Marge bake Cookie-%d\n”, ++cookiejar->cookie);
 cookiejar->empty = 0;
 }
 cleanup_and_exit();
}

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

● Compiler did not know that the
value of variable “empty” is being
changed by another process

● It noticed during compilation that
main() first sets empty=1 and
then calls the methods homer()
and marge() where the variable
empty was simply being tested
inside while condition

● It acts smart and carries out
optimization by simply replacing
the variable “empty” with 1 at all
places

● Fix?
o Declare the variables “empty” as

volatile

23

Compiler Ruined the Show!
void homer() {
 for(int i=0; i<5; i++) {
 while(true) {
 /*Loop endlessly*/
 }
 printf(“Homer ate Cookie-%d\n”, cookiejar->cookie);
 cookiejar->empty = 1;
 }
 cleanup_and_exit();
}

void marge() {
 for(int i=0; i<5; i++) {
 while(false) {
 /*Loop endlessly*/
 }
 printf(“Marge bake Cookie-%d\n”, ++cookiejar->cookie);
 cookiejar->empty = 0;
 }
 cleanup_and_exit();
}

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

The Producer Consumer Problem

● volatile seems to have fixed
the problem?
o It is an incorrect solution
o What happens when more than

one processes are racing for
updating the variable “empty”?
§ Race condition!

24

void homer() {
 for(int i=0; i<5; i++) {
 while(cookiejar->empty) {
 /*Loop endlessly*/
 }
 printf(“Homer ate Cookie-%d\n”, cookiejar->cookie);
 cookiejar->empty = 1;
 }
 cleanup_and_exit();
}

void marge() {
 for(int i=0; i<5; i++) {
 while(!cookiejar->empty) {
 /*Loop endlessly*/
 }
 printf(“Marge bake Cookie-%d\n”, ++cookiejar->cookie);
 cookiejar->empty = 0;
 }
 cleanup_and_exit();
}

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Semaphores to the Rescue!
● We will declare two

semaphore variables
inside the shared memory
region so as they can be
shared by both Marge
and Homer processes

● Main process will call the
init and destroy APIs on
these semaphore objects

25

typedef struct cookiejar_t {
 int cookie;
 sem_t jar_empty;
 sem_t jar_full;
} cookiejar_t;

cookiejar_t* cookiejar;

int main() {
 cookiejar = setup();

cookiejar->empty=1;
 sem_init(&cookiejar->jar_empty, 1, 1);
 sem_init(&cookiejar->jar_full, 1, 0);
 if(fork() == 0) { homer(); }
 if(fork() == 0) { marge(); }
 wait(NULL); // wait for Homer process
 wait(NULL); // wait for Marge process
 sem_destroy(&cookiejar->jar_empty);
 sem_destroy(&cookiejar->jar_full);
 cleanup();
 return 0;
}

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Semaphores to the Rescue!

● At the start, the value of semaphores jar_full and jar_empty was
set to 0 and 1, respectively

● Homer process upon creation will block in sem_wait as the value
of jar_full was initially 0 (decremented to -1)

● Marge upon activation will decrement jar_empty to 0 and will not
block. It will bake a cookie, increment the jar_full (now its zero),
and wake up Homer from sem_wait. Finally, it will block inside
sem_wait after decrementing jar_empty (now its -1)

● Homer will awake from sem_wait, eat the cookie, increment the
jar_empty semaphore (now its 0), and wake up Marge from
sem_wait. Finally, it will block inside sem_wait after decrementing
jar_full (now its -1)

● And the cookie business continues for five times..

● We will revisit the topic of mutual exclusion during lectures on
concurrency (multithreading), where we will again discuss it in
depth!

26

void homer() {
 for(int i=0; i<5; i++) {
 sem_wait(&cookiejar->jar_full);
 printf(“Homer ate Cookie-%d\n”, cookiejar->cookie);
 sem_post(&cookiejar->jar_empty);
 }
 cleanup_and_exit();
}

void marge() {
 for(int i=0; i<5; i++) {
 sem_wait(&cookiejar->jar_empty);
 printf(“Marge bake Cookie-%d\n”, ++cookiejar->cookie);
 sem_post(&cookiejar->jar_full);
 }
 cleanup_and_exit();
}

CSE231: Operating Systems

Lecture 09: Semaphores

© Vivek Kumar

Next Lecture
● IPC in distributed memory

o Last remaining topic in IPC

● Quiz-2 on Thursday
o Syllabus: Lectures 05-09

● Assignment-2 will be released on Friday (13th Sep)

27

