Lecture 09: Semaphores

Vivek Kumar
Computer Science and Engineering
IHIT Delhi
vivekk@iiitd.ac.in

E CSEZ231: Operating Systems

Last Lecture

int main() {
int fd[2], status;
pipe(fd);
if(fork() == 0) {
/* Child process */
close(fd[@]);
char buff[] = “Hello my dear good Parent”;

write(fd[1], buff, sizeof(buff));
exit(0);

}

/* Parent process */

close(fd[1]);

char buff[100];

read(fd[@], buff, sizeof(buff));

printf(“My obedient child says: %s\n”, buff);

wait(NULL);

return 0;

D

]

Normal '
program I UMY
flow ‘

handle_signal()

setup_frame()

Signal
handler

Retu%code 5
on the stack ‘—‘yw system_call()

I sys_sigreturn()

restore_sigcontext()

Figure 11-2. Catchin,

} 4

65._er Sga":ce

Kernel Space

o eweomsemsoss
Today’s Class

® Semaphores for process synchronization

o Mutual exclusion
o Critical section

® Producer consumer problem

1D

Lecture 09: Semaphores

Array Sum Program (Version 1)

int main() {
shm_t* shm = setup();
if(fork()==0) {
int local=0;

typedef struct shm t {

int A[SIZE];
int suml;

int sum2;
} shm_t;

s

for(int i=0; i<SIZE/2; i++) local += shm->array[i];

shm->suml += local;

cleanup_and exit();
} else {

int local=0;

for(int i=SIZE/2; i<SIZE; i++) local += shm->array[i];

shm->sum2 += local;
wait(NULL);
}
int total = shm->suml + shm->sum2;
cleanup();
return 0;

E CSEZ231: Operating Systems

© Vivek Kumar

® Both child and the
parent process
calculate the partial
sum independently

® Parent process
combine the partial
sum from the child
to its own
calculation to get
the total

o Done only after wait

Lecture 09: Semaphores

Array Sum Program (Version 2)

int main() { e et @ We want more than
shm_t* shm = setup(); int sum: One.procesls to
int chunks = SIZE/NPROCS; 1 shm_t; partICIpate In the
for(int i=@; i<NPROCS; i++) { —- g paraIIeI dlray sum
if(fork()==0) { computation
int local=0;]
e S = ey ® Children update the
for(int i=start; i<ena; i++) local += shm->array[i]; QIObaI sum in the

shared memory

shm->sum += local; region
i A RO o Isis correct?
} = Race condition!

} . '
for(int i=0; i<NPROCS; i++) wait(NULL); ﬁgdcal‘]tlilr?r%?]eare
et sime e

; global variable

} 7 sum

E CSE231: Operating Systems © Vivek Kumar 4

Lecture 09: Semaphores

Race Conditicn shm->sum += local;

® Final value of the sum will not be correct as there is a race
between reading and writing the counter “sum” by multiple
processes

® The line of code shown above is called as critical section

o Critical section is a line or block of code that access shared
modifiable data or resource that should be operated on by only

one process at a time

E CSE231: Operating Systems © Vivek Kumar

Lecture 09: Semaphores

Real World Accidents From Race Conditions

AAAAAA....
Stoooooppp

\‘\

® Therac-25 radiation overdose in 1980s

o Radiation overdose as the software failed to detect when the operator finished editing due to race
condition. It resulted in several deaths and severe injuries

® Northeastern blackout of 2003
o Race conditions failed to notify the operators about faults occurring in the power grid system
® NASDAQ software glitch in 2012

o Arace condition prevented the delivery of order Facebook IPO confirmations, so those orders
were re-submitted repeatedly

E CSE231: Operating Systems © Vivek Kumar 6

Lecture 09: Semaphores

Mutual Exclusion

® Mutual exclusion is a property that ensures that there is no
race condition by executing the critical section by a single
process only at any given time e

o One way to achieve it is by using locks _~

o We will revisit this topic during lectures on concurrency

[E CSE231: Operating Systems © Vivek Kumar

Lecture 09: Semaphores

Visualizing Mutual Exclusion

E CSEZ231: Operating Systems

shm->sum+=local;

® Each process must

acquire a lock before
entering a critical
section

A “Lock” should allow
only one process to
enter the critical section

Rest all processes
should queue (wait) to
get the key

The process acquiring
the lock must release it
when exiting the critical
section

8

Lecture 09: Semaphores

Naive Implementation of a Lock (1/3)

int value = FREE //inside SHM

&)

Acquire() {

}

Disable interrupts
if (value == BUSY) {
sleep
// Process moved to wait queue

}
value = BUSY

Enable interrupts

Release() {

}

Disable interrupts
if (anyone in wait queue) {
Move a process into ready queue
}
value = FREE
Enable interrupts

E CSEZ231: Operating Systems

® Goal: achieving mutual exclusion

over a critical section when multiple

processes are going to execute

that critical section

o Let us assume a uniprocessor
system for simplicity

A naive way is to let a process
complete the execution of a critical
section without interrupting it

Any issues here?

o The sleeping process has disabled
process scheduling!

© Vivek Kumar

o eweomsemsoss
Naive Implementation of a Lock (2/3)

int value = FREE //inside SHM 0 ® Solutlon’)

Acquire() ;?nterrupts o The sleeping process must enable
if (value == BUSY) { interrupts before going to sleep and
Enable interrupts and sleep : : :
77 Process moved to wait queue must disable it after coming out of
Disable interrupts Sleep
}

value = BUSY
Enable interrupts

}

Release() {
Disable interrupts
if (anyone in wait queue) {
Move a process into ready queue
}
value = FREE
Enable interrupts

}

F

1D

o eweomsemsoss
Naive Implementation of a Lock (3/3)

int value = FREE //inside SHM 0 ® Any Issuesf?

Acquire() {

Disable interrupts o Process acquiring the lock will

it Grelie == LSy | enjoy an everlasting vacation on
Enable interrupts and sleep
// Process moved to wait queue the CPU
Disable interrupts

T ® Critical section must be as small

Read a story book? I

Enable interrupts as pOSSIble

}
é

Release() {
Disable interrupts
if (anyone in wait queue) {
Move a process into ready queue

}
value = FREE

Enable interrupts

}

F

1D

Lecture 09: Semaphores

Atomic Read-Modify-Write Instructions

Process updating a variable will have to first “Read” (R) the variable,
followed b?/ “Modify” (M) and finally “Store” (S) the updated value so as
to be visible to other processes
o Any issues?
= P1(Var)=>R; P2(Var)>M; P3(Var)>S
. Overlapping RMS!

How to fix using hardware support?

o Hardware can combine RMS as a single instruction for a specific type of
variables (Atomic)

o Atomic instructions read a value from memory and write a new value atomically
= E.g., compare and swap (CAS), atomic increment/decrement, atomic load/store etc.
» Hardware is responsible for implementing this correctly

o User code can easily access it both on a uniprocessor and multiprocessors
systems

E CSE231: Operating Systems © Vivek Kumar 12

Lecture 09: Semaphores

Mutual Exclusion using CAS (1/2)

int value = FREE //inside SHM ‘:“/\/)T ® CAS atomica”y CheCkS |f the
P value is FREE and set it to BUSY
cquire() { .

while (CAs(value, FREE, BUSY) != true); J If Currently FREE
y o Returns true, otherwise value

} value = FREE returns false

Release() { J remains unchanged and

® Anyissues?
o Busy waiting!

= Process wastes CPU cycles
carrying out constant checks
until the lock is free

o What should the process do
when it finds the value!=FREE?

E CSE231: Operating Systems © Vivek Kumar 13

Lecture 09: Semaphores

Mutual Exclusion using CAS (2/2)

int value = FREE //inside SHM /Ci?_1

Acquire() {
while (CAS(value, FREE, BUSY) != true) {
sleep();
}
} 7

Release() {
value = FREE

}

E CSEZ231: Operating Systems

® Forcing the process to sleep
will move it to the wait queue

® Any issues?
o Sleep for how long?

® Desirable scenario

o If any process fails to acquire
the lock then it goes to sleep
but is awakened by the
process calling the release

= Can be achieved using
Semaphores!

© Vivek Kumar 14

Lecture 09: Semaphores

® A semaphore is an object with an

SemaphOreS integer value (user initialized)

Value of Semaphore Process-T1 Process-T2 that COUId be manIpUIate Wlth:
1 .
1 call semwait () o sem wait
0 sem_wait () returns - .
0 (crit sect) u = - 1
value = value -1 (atomically!
0 call sem_post () . .
1 sem_post () returns = Blocking (sleep) if value < 0,
otherwise non-blocking
Val Process-T1 State Process-T2 State
1 R Read
1 call sem_wait () Rﬁ Rzzgz O sem—pOSt
0 sem-wai turns R R 1
0 (crit steE:)t‘jr?oegin) Ruuﬁ R:;d; " Non'bIOCklng API
81 tnlenpipbomtdll §§§§§ T gﬁ = value = value +1 (atomically!)
= decr sem
1 Ready | (sem<0) »sleep Sleep = If there are one more processes
T | forite conton@h B [P g}ggg blocked inside sem_wait then
1 | call sem post. Run Sleep wake any one of them
1ncr sem un eep . . .
0 wake R Read
0 | o rohurney T s o Helps in achieving mutual
0 | Interrupt; Switch—T1 Ready Run exclusion over a critical section
0 Ready | semwait () returns Run
0 Read crit sec R i~ 1 1
g Ronir|| ol et e = Uses atomic instructions
1 Ready | sempost () returns Run Interna”y

E CSEZ231: Operating Systems Source: OSTEP Book 15

o eewsomsemaows
Array Sum Program (Version 2)

. . typedef struct shm t { .
sl SN int A[SIZE]; ® \We used a binary
sem:init(&shm—>mutex, 1, 1); ;2; iumfjteX' Semaphore tO
int chunks = SIZE/NPROCS; hm te g S r](:r]r()r1i2:€3 tf\EB
for(int i=@; i<NPROCS; i++) { lp S 55 4 y
i (fork()==0) { accesses on the
int local=0; .
int start = i*chunks; sum \/EiflEit)|EB

int end = start+chunk;

for(int i=start; i<end; i++) local += shm->array[i]; () Semaphore

it (&shm->mutex); .

el mten helped in

sem_post (&hm->mutex) ; ach|ev|ng mutual

cleanup_and exit(); .

} exclusion over the

} .y .
for(int i=0; i<NPROCS; i++) wait(NULL); (:rItIC:EiI EBEB()tI()f]
cleanup(); o No more race
return 9;

condition!

¥ 4) sem_destroy

Lecture 09: Semaphores

Measuring the Parallel Performance?

® Speedup is used to denote the performance improvement
by using multiple processes
O Speedup = TseriaI/TparaIIeI

E CSE231: Operating Systems © Vivek Kumar

17

o eweomsemsoss
Today’s Class

® Shared memory

o Introduction to parallel computing
o Semaphores for process synchronization

® Producer consumer problem

1D

The Producer Consumer Problem

The Simpsons story

Process-A Shared Process-B
memory

Transactions in
shared memory

Picture source: Google images

1D

(@)

Homer is fond of eating cookies
every time

Marge is super busy with her
baby and so cannot bake a lot of
cookies once

The cookie jar is the place to
store cookies shared between
Marge and Homer

Homer picks a cookies from
cookie jar if available and then
waits for Marge to prepare one
for him

Marge waits for Homer to eat the
cookie from cookie jar and
prepares one if no cookie is
available

We need to synchronize between
transactions, for example, the
producer-consumer scenario
described above (or bounded
buffer problem)

Lecture 09: Semaphores

The Producer Consumer Problem

'vivek@Ppossum:

Marge
Homer
Marge
Homer

Marge
Homer
Marge
Homer
Marge
Homer

E CSEZ231: Operating Systems

$./a.out
bake Cookie-1
ate Cookie-1
bake Cookie-2
ate Cookie-2
bake Cookie-3
ate Cookie-3
bake Cookie-4
ate Cookie-4
bake Cookie-5
ate Cookie-5

© Vivek Kumar

The Simpsons story

o Homer is fond of eating cookies
every time

@ Marge is super busy with her
baby and so cannoft bake a lot of
cookies once

@ The cookie jar is the place to
store cookies shared between
Marge and Homer

e Homer picks a cookies from
cookie jar if available and then
waits for Marge to prepare one
for him

o Marge waits for Homer to eat the
cookie from cookie jar and
prepares one if no cookie is
available

We need to synchronize between
transactions, for example, the
producer-consumer scenario
described above (or bounded
buffer problem)

20

The Producer Consumer Problem

typedef struct cookiejar_t {
int cookie;

int empty;
Il g 1) shm_open (...)
cookiejar_t* cookiejar; 2) ftruncate (...)

3) mmap (...)

int main() {
cookiejar = setup();
cookiejar->empty=1;
if(fork() == @) { homer(); }
if(fork() == @) { marge(); }
wait(NULL); // wait for Homer process
wait(NULL); // wait for Marge process
cleanup();

return 0; 1) munmap ()

2) close(...)

3) shm_unlink (...)

1D

® Ve will create a shared

memory segment of the
type cookiejar_t that
contains the “cookie”
number and a flag “empty”
to indicate the availability of
a cookie in the cookie jar

Setup and cleanup of
shared memory region
works exactly as described
In earlier slides

Lecture 09: Semaphores

The Producer Consumer Problem

[vivek@possum: $./a.out
Marge bake Cookie-1

void homer() {
for(int i=0; i<5; i++) {

while(cookiejar->empty) { AC
/*Loop endlessly*/ [lvivek@possum: $./a.out
} Marge bake Cookie-1
printf(“Homer ate Cookie-%d\n”, cookiejar->cookie); AC
} ATRCERIPEIE = 52 lvivek@possum: $./a.out
cleanup_and_exit(); Marge bake Cookie-1
} AC
o ey ® | tried running the program
for(int i=0; i<5; i++) { .
while(1cookiejar->empty) { several times but Homer
/*L dlessly*/ . .
y oo was simply not eating any
intf(“M bake Cookie-%d\n”, kiejar- kie); . .
okiegar-sompty o oy o\ wreosideanmcoode) cookie despite the fact that
} .
cleanup_and _exit(); Marge had In faCt baked
} one for him..

o What went wrong?

E CSE231: Operating Systems © Vivek Kumar 22

Lecture 09: Semaphores

Compiler Ruined the Show!

void homer() { .
for(int i=0; i<5; i++) {
while(true) {
/*Loop endlessly*/
/ ®
printf(“Homer ate Cookie-%d\n”, cookiejar->cookie);
cookiejar->empty = 1;
}
cleanup_and _exit();
) &
void marge() {
for(int i=0; i<5; i++) {
while(false) { o
/*Loop endlessly*/
}
printf(“Marge bake Cookie-%d\n”, ++cookiejar->cookie);
cookiejar->empty = 0;
}
cleanup_and _exit(); .
) 7

E CSEZ231: Operating Systems

© Vivek Kumar

Compiler did not know that the
value of variable “empty” is being
changed by another process

It noticed during compilation that
main() first sets empty=1 and
then calls the methods homerf)
and marge() where the variable
empty was simply being tested
inside while condition

It acts smart and carries out
optimization by simply replacin
the variable “empty” with 1 at all
places

Fix?
o Declare the variables “empty” as
volatile

23

Lecture 09: Semaphores

The Producer Consumer Problem

void homer() {
for(int i=0; i<5; i++) {
while(cookiejar->empty) {
/*Loop endlessly*/
}

printf(“Homer ate Cookie-%d\n”, cookiejar->cookie);
cookiejar->empty = 1;
}

cleanup_and _exit();

void marge() {
for(int i=0; i<5; i++) {
while(!cookiejar->empty) {
/*Loop endlessly*/
}

printf(“Marge bake Cookie-%d\n”, ++cookiejar->cookie);
cookiejar->empty = 0;
}

cleanup_and _exit();

E CSEZ231: Operating Systems

@Ppossum:

bake Cookie-1
ate Cookie-1
bake Cookie-2
ate Cookie-2
bake Cookie-3

ate Cookie-3
bake Cookie-4
ate Cookie-4
bake Cookie-5
ate Cookie-5

® Vvolatile seems to have fixed
the problem?
O It is an incorrect solution

o What happens when more than
one processes are racing for
updating the variable “empty”?

= Race condition!

© Vivek Kumar 24

Lecture 09: Semaphores

Semaphores to the Rescue!

typedef struct cookiejar_t {
int cookie;
sem_t jar_empty;
sem_t jar_full;

} cookiejar_t;

cookiejar_t* cookiejar;

int main() {
cookiejar = setup();
cookiejar->empty=1;

sem_init(&cookiejar->jar_full, 1, 0);
if(fork() == @) { homer(); }
if(fork() == @) { marge(); }
wait(NULL); // wait for Homer process
wait(NULL); // wait for Marge process
sem_destroy(&cookiejar->jar_empty);
sem_destroy(&cookiejar->jar_full);
cleanup();

return 0;

sem_init(&cookiejar->jar_empty, 1, 1);

4

E CSEZ231: Operating Systems

© Vivek Kumar

We will declare two
semaphore variables
iInside the shared memory
region so as they can be
shared by both Marge
and Homer processes

Main process will call the
init and destroy APIs on
these semaphore objects

25

Lecture 09: Semaphores

Semaphores to the Rescue!

void homer() {
for(int i=0; i<5; i++) {
sem_wait(&cookiejar->jar_full);
printf(“Homer ate Cookie-%d\n”, cookiejar->cookie);
sem_post(&cookiejar->jar_empty);
}

cleanup_and _exit();

void marge() {
for(int i=0; i<5; i++) {
sem_wait(&cookiejar->jar_empty);

printf(“Marge bake Cookie-%d\n”, ++cookiejar->cookie);

sem_post(&cookiejar->jar_full);

}

cleanup_and _exit();

7 e
°
°
°
&

E CSEZ231: Operating Systems

© Vivek Kumar

vivek@possum: $./a.out
Marge bake Cookie-1
Homer ate Cookie-1
Marge bake Cookie-2
Homer ate Cookie-2
bake Cookie-3
ate Cookie-3
bake Cookie-4
ate Cookie-4
bake Cookie-5
ate Cookie-5

Marge
Homer
Marge
Homer
Marge
Homer

At the start, the value of semaphores jar_full and jar_empty was
set to 0 and 1, respectively

Homer process upon creation will block in sem_wait as the value
of jar_full was initially O (decremented to -1)

Marge upon activation will decrement jar_empty to 0 and will not
block. It will bake a cookie, increment the jar_full fnow its zero),
and wake up Homer from sem_wait. Finally, 1t will block inside
sem_wait after decrementing jar_empty (now its -1)

Homer will awake from sem_wait, eat the cookie, increment the
jar_empty semaphore (now its 0), and wake up Marge from
sem_wait. Finally, it will block inside sem_wait after decrementing
jar_full (now its -1)

And the cookie business continues for five times..

We will revisit the topic of mutual exclusion during lectures on

gons{:mrrency (multithreading), where we will again discuss it in
epth!

26

Next Lecture

® |PC in distributed memory
o Last remaining topic in IPC

® Quiz-2 on Thursday
o Syllabus: Lectures 05-09

® Assignment-2 will be released on Friday (13" Sep)

1D

